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1. Recap

• We thought about how pure math comes from abstractions and analogies.

• We thought about properties of equivalence relations.

• We saw the definition of category, generalizing equivalence relations.

• We looked at some examples including numbers, factors, and privilege.

This week:

Today we’ll look at some more examples,
and see how the framework of categories gives us a more nuanced way to talk about sameness.
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1. Recap of what category theory is for

Category theory is the “mathematics of mathematics”

Why do we even do math at all?

• To solve problems.

• It’s fun and interesting.

• We can apply it to other parts of life.

• It helps us understand the world better.

• It helps us make connections between different things in the world.

Category theory does all these things for us in math and therefore also life.
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Definition: a category C consists of:
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1. Recap: Definition of category

Definition: a category C consists of:

Data

• a set of objects obC

• for all a, b ∈ obC a set of arrows C(a, b)

a b

Structure

• identities: for all objects a

an identity arrow a
1a

a

• composition: given a
f

b
g

c

a composite arrow a
g◦f

c

Properties (axioms)

• unit: given a
f

b

a
1a

a
f

b = a
f

b

a
f

b
1b

b = a
f

b

• associativity: given a
f

b
g

c
h

d

(h ◦ g) ◦ f = h ◦ (g ◦ f )

What happened to symmetry?

We don’t demand it but we look for it afterwards.

This is the notion of “sameness” in a category.
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1. Recap: Examples we saw

1. • objects: natural numbers 0, 1, 2, . . .
• morphisms: a b whenever a ≤ b

2. • objects: factors of 30
• morphisms: a b whenever a is a multiple of b

3. • objects: factors of n
• morphisms: a b whenever a is a multiple of b

4. • objects: a shape (just one object)
• morphisms: symmetries of the shape

5. • objects: subsets of {2, 3, 5} or {a, b, c} or {rich, white, male}
• arrows: subset relationships

6.



2. More examples: Sets and functions

There is a large category with

• objects: all possible sets

• arrows: all possible functions
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2. More examples: Sets and functions

There is a large category with

• objects: all possible sets

• arrows: all possible functions

Functions have a fixed domain and
codomain (range).

A function is like a vending machine.

vending
machine

input output

a apple
b banana
c chocolate

But we could do less “sensible” things:

a

b

c

apple

banana

chocolate

a

b

c

apple

banana

chocolate

Every input has to produce exactly one thing so these
don’t count.

a

b

c

apple

banana

chocolate

a

b

c

apple

banana

chocolate

In this category:

a morphism A B is a function A B.
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2. More examples: order-preserving functions

In some cases the lines don’t have to cross

a

b

c

apple

banana

What other possibilities are there?

a

b

c

apple

banana

a

b

c

apple

banana
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b
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2. More examples: order-preserving functions

In some cases the lines don’t have to cross

a

b

c

apple

banana

What other possibilities are there?

a

b

c

apple

banana

a

b

c

apple

banana

a

b

c

apple

banana

When lines don’t cross this
is called order-preserving.

1

2 3 7

6 14 21

42

1

2

3

7

6

14

21

42

Think about these:

{people, age} {people, wealth}

{people, privilege} {people, wealth}

There is a category of ordered sets and
order-preserving functions
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2. More examples: Sets with structure

We regarded symmetry as a relation and
produced the table on the right

90
◦

90
◦

180
◦

270
◦

=

90
◦

270
◦

0
◦

=

0 90 180 270

0 0 90 180 270

90 90 180 270 0

180 180 270 0 90

270 270 0 90 180

The table gives a binary operation on the elements.

This is called a group. It has to satisfy some axioms:

• associativity

• there is an identity element which “does nothing”

• every element has an inverse which “undoes” it

This is a category with a single object.

9.



2. More examples: Zooming in and out

Categories work at different scales.

Zoom in: an ordered set is a category.

• objects: elements of the set

• morphisms: ≤

Zoom out: there is a large category of ordered sets.

• objects: ordered sets

• morphisms: order-preserving functions

We can do this on sets
themselves.

Zoom in: a set is a category.

• objects: elements of the set

• morphisms: just identities

Zoom out: there is a large category sets

• objects: sets

• morphisms: functions

Categories are a generalization of sets.
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• morphism: the symmetries
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2. More examples: Zooming in and out

Zoom in: the group of symmetries of a square is
a category

• objects: one single object, the square

• morphism: the symmetries

This generalizes to other shapes.

Zoom out: there is a large category of groups

• objects: groups

• morphisms: structure-preserving functions

Technicalities:

• When we did ordered sets we also had
structure-preserving morphisms.

• There the structure was the ordering, so
the morphisms had to preserve the order.

• Here the structure is the binary operation,
so the morphisms have to preserve that.

• This means

f (a ◦ b) = f (a) ◦ f (b)

We’ll come back to this later.
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3. Invertibility
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3. Invertibility

All equations are lies. . . or useless.

8 + 1 = 1 + 8

2× 5 = 5× 2

The only equation that is not a lie is

x = x .
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3. Invertibility

In category theory we try and express
things just using relationships.

For example, can we say these sets are “the
same” without mentioning the elements?

{1, 2, 3} ≡ {a, b, c}

We use invertibility of morphisms.

This is about going back to where you started or
undoing a process.

1 5

+4

−4

Are these processes undoable?

i.
+4

ii.
×4

iii.
+0

iv.
×0

v.
squaring

vi. All the functions {a, b} {1, 2}.
Which do you think should count as
invertible?

vii. What about functions
{a, b, c} {1, 2}?

13.



3. Invertibility

vi.

A B
f

a

b

1

2

A B
f

a

b

1

2

vii.

A B
f

a

b

c

1

2

A B
f

a

b

c

1

2
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3. Invertibility

vi.

A B
f

a

b

1

2

A B
f

a

b

1

2

vii.

A B
f

a

b

c

1

2

A B
f

a

b

c

1

2

• In what sense is/isn’t divorce the inverse of
marriage?

• In what sense is/isn’t a pardon the inverse
of a criminial conviction?
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3. Invertibility

Definition of inverses in category theory

An inverse for f is g such that:

a b

f

g

a b a
f g

id

b a b
g f

id

In that case

• f and g are inverses of each other

• they are called invertible, also
isomorphisms

• a and b are called isomorphic

Isomorphic objects are treated as the same

by the rest of the category.

a b

f

g

x

Things to try proving:

i. Inverses are unique.

ii. Isomorphism is an equivalence relation.
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4. Isomorphisms of sets

When is a function an isomorphism?

A B
f

a

b

c

1

2

3

A B
f

a

b

c

1

2

3

A B
f

a

b

c

1

2

3

Number of isomorphisms is:

16.
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5. Isomorphisms of groups

A group is a set with a binary operation satisfying
associativity, identities, and inverses.

• It is a category with one object in which
every morphism is an isomorphism.

• But we can zoom out: what is an
isomorphism of groups?

Key: patterns in tables
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associativity, identities, and inverses.

• It is a category with one object in which
every morphism is an isomorphism.

• But we can zoom out: what is an
isomorphism of groups?

Key: patterns in tables

Rotations of square ≡ addition on 4-hour clock

0 90 180 270

0 0 90 180 270

90 90 180 270 0

180 180 270 0 90

270 270 0 90 180

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2
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5. Isomorphisms of groups

A group is a set with a binary operation satisfying
associativity, identities, and inverses.

• It is a category with one object in which
every morphism is an isomorphism.

• But we can zoom out: what is an
isomorphism of groups?

Key: patterns in tables

Rotations of square ≡ addition on 4-hour clock

0 90 180 270

0 0 90 180 270

90 90 180 270 0

180 180 270 0 90

270 270 0 90 180

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

These patterns are “the same”.

Try Z10 (“10-hour clock”) ×

1 3 7 9

1

3

7

9

1 3 9 7

1

3

9

7

We have to re-order this to see the pattern.

Try Z8 (8-hour clock) ×.

What pattern do you see?

1 3 5 7

1

3

5

7

17.



5. Isomorphisms of groups

Here are two functions from the rotations of a
square to {1, 3, 9, 7} in Z10

f

0

90

180

270

1

3

7

9

g

0

90

180

270

1

3

7

9

Which do you think should count as “pattern
preserving” and which not?

0 90 180 270

0 0 90 180 270

90 90 180 270 0

180 180 270 0 90

270 270 0 90 180

1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

1 3 9 7

1 1 3 9 7

3 3 9 7 1

9 9 7 1 3

7 7 9 3 9

18.



5. Isomorphisms of groups

Here are two functions from the rotations of a
square to {1, 3, 9, 7} in Z10

f

0

90

180

270

1

3

7

9

g

0

90

180

270

1

3

7

9

Which do you think should count as “pattern
preserving” and which not?

0 90 180 270

0 0 90 180 270

90 90 180 270 0

180 180 270 0 90

270 270 0 90 180

1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

1 3 9 7

1 1 3 9 7

3 3 9 7 1

9 9 7 1 3

7 7 9 3 9

Preserving pattern is about
respecting ◦

A group homomorphism G
f

H is a function

such that for all a, b,∈ G , f (a ◦ b) = f (a) ◦ f (b)

a b F (a) F (b)

a ◦ b F (a ◦ b)

F (a) ◦ F (b)

do F

do F

do ◦

do ◦

= ?

Groups and homomorphisms form a category.

18.



5. Isomorphisms of groups

• Isomorphisms in the category of groups and group homormorphisms are
group homomorphisms with an inverse.

• This turns out to mean they have the same pattern.

• There is only one possible pattern for a group of 2 elements. We say there is only one
group with 2 elements “up to isomorphism”.

• There is also only one group with 3 elements “up to isomorphism”.

For example addition on a “3-hour clock” (integers modulo 3).

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 1 0

This would also be the same pattern as rotations of an equilateral triangle.

19.



5. Isomorphisms of groups

Here are some examples of the 2-element group.

1

0
+ 0 1

0 0 1

1 1 0

+ even odd

even even odd

odd odd even

Battenberg Cake

× 0 1

0 0 0

1 0 1

20.
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5. Isomorphisms of groups

Here are some examples of the 2-element group.

1

0
+ 0 1

0 0 1

1 1 0

+ even odd

even even odd

odd odd even

Battenberg Cake

× 0 1

0 0 0

1 0 1×

× even odd

even even even

odd even odd×
× real imaginary

real real imaginary

imaginary imaginary real

× tolerant intolerant

tolerant tolerant intolerant

intolerant intolerant tolerant
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5. Isomorphisms of groups

• There are only two possible patterns for a group of 4 elements.

• We say there are only two groups with 4 elements, “up to isomorphism”.

We have seen the two possible patterns:

0 90 180 270

0 0 90 180 270

90 90 180 270 0

180 180 270 0 90

270 270 0 90 180

Z8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

21.



6. Isomorphisms of ordered sets

Isomorphisms of ordered sets are functions that
are both order-preserving and invertible.

Consider these functions Z Z.
Are they order-preserving? Invertible?

i. f (n) = 2n

ii. f (n) = −n

iii. f (n) = n + 2

iv. Can you figure out what all the
order-preserving isomorphisms are? See if
you can put things in areas of the Venn
diagram.

functions Z Z

o.p. invertible

22.



6. Isomorphisms of ordered sets

When we draw an ordered set like a category
an isomorphism shows “the same pattern” of arrows.

These whole categories are isomorphic.

male people

female people

∼=

white people

black people

∼=

rich people

poor people

23.
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6. Isomorphisms of ordered sets

When we draw an ordered set like a category
an isomorphism shows “the same pattern” of arrows.

These whole categories are isomorphic.

male people

female people

∼=

white people

black people

∼=

rich people

poor people

However:

male people

female people

6∼=

female people

male people

These are also isomorphic.

30

15106

52 3

1

rich white men

wmrmrw

mr w

∅rich white
cis women

rich white
trans women

rich non-white
cis women

non-rich white
cis women

rich non-white
trans women

non-rich white
trans women

non-rich non-white
cis women

non-rich non-white
trans women

23.



What equality really means

Equality in category theory is not about when things are the same,
but when the category treats them as the same.

24.



What equality really means

Equality in category theory is not about when things are the same,
but when the category treats them as the same.

Equality in society should be about

society treating people as the same.
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