Math for America minicourse
 Introduction to Category Theory

Session 2: Sameness

Dr Eugenia Cheng
twitter.com/DrEugeniaCheng
www.eugeniacheng.com/mfa23

Wednesday May 10, 2023

Plan

1. Recap
2. More examples of categories: sets, ordered sets, groups
3. Invertibility
4. Isomorphisms of sets
5. Isomorphisms of groups
6. Isomorphisms of ordered sets
7. Recap

- We thought about how pure math comes from abstractions and analogies.
- We thought about properties of equivalence relations.
- We saw the definition of category, generalizing equivalence relations.
- We looked at some examples including numbers, factors, and privilege.

This week:

Today we'll look at some more examples, and see how the framework of categories gives us a more nuanced way to talk about sameness.

1. Recap of what category theory is for

Category theory is the "mathematics of mathematics"

Why do we even do math at all?

- To solve problems.
- It's fun and interesting.
- We can apply it to other parts of life.
- It helps us understand the world better.
- It helps us make connections between different things in the world.

Category theory does all these things for us in math and therefore also life.

1. Recap: Definition of category

Definition: a category \mathcal{C} consists of:

1. Recap: Definition of category

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Structure

- identities: for all objects a
an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$

1. Recap: Definition of category

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$ $a \longrightarrow b$

Structure

- identities: for all objects a
an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
\begin{aligned}
a \xrightarrow{1_{a}} a \xrightarrow{f} b & =a \xrightarrow{f} b \\
a \xrightarrow{f} b \xrightarrow{1_{b}} b & =a \xrightarrow{f} b
\end{aligned}
$$

- associativity: given $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$

$$
a \longrightarrow b
$$

Structure

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$ a composite arrow $a \xrightarrow{g \circ f} c$

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
\begin{aligned}
a \xrightarrow{1_{a}} a \xrightarrow{f} b & =a \xrightarrow{f} b \\
a \xrightarrow{f} b \xrightarrow{1_{b}} b & =a \xrightarrow{f} b
\end{aligned}
$$

- associativity: given $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

What happened to symmetry?

We don't demand it but we look for it afterwards. This is the notion of "sameness" in a category.

1. Recap: Examples we saw

1. objects: natural numbers $0,1,2, \ldots$

- morphisms: $a \longrightarrow b$ whenever $a \leq b$

2. - objects: factors of 30

- morphisms: $a \longrightarrow b$ whenever a is a multiple of b

3. - objects: factors of n

- morphisms: $a \longrightarrow b$ whenever a is a multiple of b

4. - objects: a shape (just one object)

- morphisms: symmetries of the shape

5. objects: subsets of $\{2,3,5\}$ or $\{a, b, c\}$ or $\{$ rich, white, male $\}$

- arrows: subset relationships

2. More examples: Sets and functions

There is a large category with

- objects: all possible sets
- arrows: all possible functions

There is a large category with

- objects: all possible sets
- arrows: all possible functions

Functions have a fixed domain and codomain (range).

There is a large category with

- objects: all possible sets
- arrows: all possible functions

Functions have a fixed domain and codomain (range).

A function is like a vending machine.

There is a large category with

- objects: all possible sets
- arrows: all possible functions

Functions have a fixed domain and codomain (range).

A function is like a vending machine.

But we could do less "sensible" things:

There is a large category with

- objects: all possible sets
- arrows: all possible functions

Functions have a fixed domain and codomain (range).

A function is like a vending machine.

But we could do less "sensible" things:

Every input has to produce exactly one thing so these don't count.

In this category:
a morphism $A \longrightarrow B$ is a function $A \longrightarrow B$.
2. More examples: order-preserving functions

In some cases the lines don't have to cross

What other possibilities are there?

a	apple
b	banana
c	
a	apple
b	banana
c	
a	apple
b	banana
c	

2. More examples: order-preserving functions

In some cases the lines don't have to cross

> When lines don't cross this is called order-preserving.

Think about these:

$$
\begin{aligned}
\text { \{people, age }\} & \longrightarrow \text { \{people, wealth }\} \\
\{\text { people, privilege }\} & \longrightarrow \text { people, wealth }\}
\end{aligned}
$$

There is a category of ordered sets and order-preserving functions

2. More examples: Sets with structure

We regarded symmetry as a relation and produced the table on the right

	0	90	180	270
0	0	90	180	270
90	90	180	270	0
180	180	270	0	90
270	270	0	90	180

The table gives a binary operation on the elements.
This is called a group. It has to satisfy some axioms:

- associativity
- there is an identity element which "does nothing"
- every element has an inverse which "undoes" it

This is a category with a single object.

Categories work at different scales.

Zoom in: an ordered set is a category.

- objects: elements of the set
- morphisms: \leq

Zoom out: there is a large category of ordered sets.

- objects: ordered sets
- morphisms: order-preserving functions

We can do this on sets themselves.

Zoom in: a set is a category.

- objects: elements of the set
- morphisms: just identities

Zoom out: there is a large category sets

- objects: sets
- morphisms: functions

Categories are a generalization of sets.
2. More examples: Zooming in and out

Zoom in: the group of symmetries of a square is a category

- objects: one single object, the square
- morphism: the symmetries

Zoom in: the group of symmetries of a square is a category

- objects: one single object, the square
- morphism: the symmetries

This generalizes to other shapes.
2. More examples: Zooming in and out

Zoom in: the group of symmetries of a square is a category

- objects: one single object, the square
- morphism: the symmetries

This generalizes to other shapes.

Zoom out: there is a large category of groups

- objects: groups
- morphisms: structure-preserving functions

2. More examples: Zooming in and out

Zoom in: the group of symmetries of a square is a category

- objects: one single object, the square
- morphism: the symmetries

This generalizes to other shapes.

Zoom out: there is a large category of groups

- objects: groups
- morphisms: structure-preserving functions

Technicalities:

- When we did ordered sets we also had structure-preserving morphisms.
- There the structure was the ordering, so the morphisms had to preserve the order.
- Here the structure is the binary operation, so the morphisms have to preserve that.
- This means

$$
f(a \circ b)=f(a) \circ f(b)
$$

We'll come back to this later.
3. Invertibility
3. Invertibility

All equations are lies.

3. Invertibility

All equations are lies.

$$
8+1=1+8
$$

3. Invertibility

All equations are lies.

$$
\begin{aligned}
& 8+1=1+8 \\
& 2 \times 5=5 \times 2
\end{aligned}
$$

All equations are lies.

$$
\begin{aligned}
& 8+1=1+8 \\
& 2 \times 5=5 \times 2
\end{aligned}
$$

The only equation that is not a lie is

$$
x=x .
$$

All equations are lies. . . or useless.

$$
\begin{aligned}
& 8+1=1+8 \\
& 2 \times 5=5 \times 2
\end{aligned}
$$

The only equation that is not a lie is

$$
x=x
$$

3. Invertibility

In category theory we try and express things just using relationships.

In category theory we try and express things just using relationships.

For example, can we say these sets are "the same" without mentioning the elements?

$$
\{1,2,3\} \equiv\{a, b, c\}
$$

In category theory we try and express things just using relationships.

For example, can we say these sets are "the same" without mentioning the elements?

$$
\{1,2,3\} \equiv\{a, b, c\}
$$

We use invertibility of morphisms.
This is about going back to where you started or undoing a process.

In category theory we try and express things just using relationships.

For example, can we say these sets are "the same" without mentioning the elements?

$$
\{1,2,3\} \equiv\{a, b, c\}
$$

We use invertibility of morphisms.
This is about going back to where you started or undoing a process.

In category theory we try and express things just using relationships.

For example, can we say these sets are "the same" without mentioning the elements?

$$
\{1,2,3\} \equiv\{a, b, c\}
$$

We use invertibility of morphisms.
This is about going back to where you started or undoing a process.

In category theory we try and express things just using relationships.

For example, can we say these sets are "the same" without mentioning the elements?

$$
\{1,2,3\} \equiv\{a, b, c\}
$$

We use invertibility of morphisms.
This is about going back to where you started or undoing a process.

3. Invertibility

In category theory we try and express things just using relationships.

For example, can we say these sets are "the same" without mentioning the elements?

$$
\{1,2,3\} \equiv\{a, b, c\}
$$

We use invertibility of morphisms.
This is about going back to where you started or undoing a process.

Are these processes undoable?
i. $\xrightarrow{+4}$
ii. $\xrightarrow{\times 4}$
iii. $\xrightarrow{+0}$
iv. $\xrightarrow{\times 0}$
squaring
vi. All the functions $\{a, b\} \longrightarrow\{1,2\}$. Which do you think should count as invertible?
vii. What about functions $\{a, b, c\} \longrightarrow\{1,2\}$?

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& a \longrightarrow 1 \\
& b \longrightarrow 2
\end{aligned} \begin{aligned}
& A \xrightarrow{f} B \\
& a>\mathbf{L}_{2}^{1}
\end{aligned}
$$

vii.

$$
\begin{aligned}
& A \xrightarrow{f} B \\
& a \longrightarrow 1 \\
& b \longrightarrow 2 \\
& c
\end{aligned} \begin{aligned}
& A \xrightarrow{f} B \\
& a \longrightarrow 1 \\
& b \rightarrow 2 \\
& c
\end{aligned}
$$

vii.

- In what sense is/isn't divorce the inverse of marriage?
- In what sense is/isn't a pardon the inverse of a criminial conviction?

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.
3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

3. Invertibility

Definition of inverses in category theory
An inverse for f is g such that:

In that case

- f and g are inverses of each other
- they are called invertible, also isomorphisms
- a and b are called isomorphic

Isomorphic objects are treated as the same by the rest of the category.

Things to try proving:
i. Inverses are unique.
ii. Isomorphism is an equivalence relation.

When is a function an isomorphism?

Number of isomorphisms is:

When is a function an isomorphism?

Number of isomorphisms is: $\quad 3 \times 2 \times 1=6$

When is a function an isomorphism?

Number of isomorphisms is: $\quad 3 \times 2 \times 1=6$ Similar to permutations!

Isomorphisms $A \longrightarrow B$ are bijections.

- For finite sets: same number of elements.
- For infinite sets: same infinity...

When is a function an isomorphism?
$A \xrightarrow{f} B$
$a \longrightarrow 1$
$b \longrightarrow 2$
$c \longrightarrow 3$

Number of isomorphisms is: $\quad 3 \times 2 \times 1=6$ Similar to permutations!

Isomorphisms $A \longrightarrow B$ are bijections.

- For finite sets: same number of elements.
- For infinite sets: same infinity...

Why, technically, is f not an isomorphism?

When is a function an isomorphism?
$A \xrightarrow{f} B$
$a \longrightarrow 1$
$b \longrightarrow 2$
$c \longrightarrow 3$

Number of isomorphisms is: $\quad 3 \times 2 \times 1=6$ Similar to permutations!

Isomorphisms $A \longrightarrow B$ are bijections.

- For finite sets: same number of elements.
- For infinite sets: same infinity...

Why, technically, is f not an isomorphism?
We can try to define an inverse g.

When is a function an isomorphism?
$A \xrightarrow{f} B$
$a \longrightarrow 1$
$b \longrightarrow 2$
$c \longrightarrow 3$

Number of isomorphisms is: $\quad 3 \times 2 \times 1=6$ Similar to permutations!

Isomorphisms $A \longrightarrow B$ are bijections.

- For finite sets: same number of elements.
- For infinite sets: same infinity...

Why, technically, is f not an isomorphism?
We can try to define an inverse g.

> 5. Isomorphisms of groups

A group is a set with a binary operation satisfying associativity, identities, and inverses.

- It is a category with one object in which every morphism is an isomorphism.
- But we can zoom out: what is an isomorphism of groups?

Key: patterns in tables

A group is a set with a binary operation satisfying associativity, identities, and inverses.

- It is a category with one object in which every morphism is an isomorphism.
- But we can zoom out: what is an isomorphism of groups?

Key: patterns in tables

Rotations of square \equiv addition on 4 -hour clock

	0	90	180	270
0	0	90	180	270
90	90	180	270	0
180	180	270	0	90
270	270	0	90	180

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

These patterns are "the same".

A group is a set with a binary operation satisfying associativity, identities, and inverses.

- It is a category with one object in which every morphism is an isomorphism.
- But we can zoom out: what is an isomorphism of groups?

Key: patterns in tables

Rotations of square \equiv addition on 4-hour clock

	0	90	180	270
0	0	90	180	270
90	90	180	270	0
180	180	270	0	90
270	270	0	90	180

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Try \mathbb{Z}_{10} (" 10 -hour clock") \times

	1	3	7	9		1	3	9	7
1						1			
3									
7									
9						7			

We have to re-order this to see the pattern.
Try \mathbb{Z}_{8} (8-hour clock) \times. What pattern do you see?

	1	3	5	7
1				
3				
5				
7				

These patterns are "the same".

Here are two functions from the rotations of a square to $\{1,3,9,7\}$ in \mathbb{Z}_{10}

Which do you think should count as "pattern preserving" and which not?

	0	90	180	270		1	3	7	9		1	3	9	7
0	0	90	180	270	1	1	3	7	9	1	1	3	9	7
90	90	180	270	0	3	3	9	1	7	3	3	9	7	1
180	180	270	0	90	7	7	1	9	3	9	9	7	1	3
270	270	0	90	180	9	9	7	3	1	7	7	9	3	9

Here are two functions from the rotations of a square to $\{1,3,9,7\}$ in \mathbb{Z}_{10}

Which do you think should count as "pattern preserving" and which not?
$\left.\begin{array}{r|ccccc|ccccc|cccc} & 0 & 90 & 180 & 270 \\ \hline 0 & 0 & 90 & 180 & 270 & & 1 & 1 & 3 & 7 & 9 & & 1 & 1 & 3 \\ \hline\end{array}\right)$

Preserving pattern is about respecting \circ

A group homomorphism $G \xrightarrow{f} H$ is a function such that for all $a, b, \in G, f(a \circ b)=f(a) \circ f(b)$

Groups and homomorphisms form a category.

5. Isomorphisms of groups

- Isomorphisms in the category of groups and group homormorphisms are group homomorphisms with an inverse.
- This turns out to mean they have the same pattern.
- There is only one possible pattern for a group of 2 elements. We say there is only one group with 2 elements "up to isomorphism".
- There is also only one group with 3 elements "up to isomorphism".

For example addition on a " 3 -hour clock" (integers modulo 3).

+	0	1	2
0	0	1	2
1	1	2	0
2	2	1	0

This would also be the same pattern as rotations of an equilateral triangle.

Here are some examples of the 2-element group.

Battenberg Cake

Here are some examples of the 2-element group.

	$+$	0	1	$+$	even	odd
(0)	0	0	1	even	even	odd
	1	1	0	odd	odd	even

Battenberg Cake

5. Isomorphisms of groups

Here are some examples of the 2-element group.
\(\left.\begin{array}{|c|ccc|cc}+ \& 0 \& 1 \& \& + \& even

\hline

1\end{array}\right)\)\begin{tabular}{lll}
odd

\hline 0 \& 0 \& 1

even

1

 1

even

odd

odd

odd

even
\end{tabular}

\times	even	odd
even	even	even
odd	even	odd

5. Isomorphisms of groups

Here are some examples of the 2-element group.
\(\left.\begin{array}{|c|ccc|cc}+ \& 0 \& 1 \& \& + \& even

\hline

1\end{array}\right)\)\begin{tabular}{lll}
odd

\hline 0 \& 0 \& 1

1 \& 1 \& 0

even \& even

odd \& odd

odd \& even
\end{tabular}

5. Isomorphisms of groups

Here are some examples of the 2-element group.

	$+$	0	1	$+$	even	odd
)	0	0	1	even	even	odd
	1	1	0	odd	odd	even

\times	real	imaginary
real	real	imaginary
imaginary	imaginary	real

5. Isomorphisms of groups

Here are some examples of the 2-element group.

	$+$	0	1	$+$	even	odd
,	0	0	1	even	even	odd
	1	1	0	odd	odd	even

\times	real	imaginary
real	real	imaginary
imaginary	imaginary	real

\times	tolerant	intolerant
tolerant	tolerant	intolerant
intolerant	intolerant	tolerant

5. Isomorphisms of groups

- There are only two possible patterns for a group of 4 elements.
- We say there are only two groups with 4 elements, "up to isomorphism".

We have seen the two possible patterns:

	0	90	180	270
0	0	90	180	270
90	90	180	270	0
180	180	270	0	90
270	270	0	90	180

\mathbb{Z}_{8}	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

6. Isomorphisms of ordered sets

Isomorphisms of ordered sets are functions that are both order-preserving and invertible.

Consider these functions $\mathbb{Z} \longrightarrow \mathbb{Z}$.
Are they order-preserving? Invertible?
i. $f(n)=2 n$
ii. $f(n)=-n$
iii. $f(n)=n+2$
iv. Can you figure out what all the order-preserving isomorphisms are? See if you can put things in areas of the Venn diagram.

6. Isomorphisms of ordered sets

When we draw an ordered set like a category an isomorphism shows "the same pattern" of arrows.

These whole categories are isomorphic.

When we draw an ordered set like a category an isomorphism shows "the same pattern" of arrows.

These whole categories are isomorphic.

However:
male people female people

female people

male people

When we draw an ordered set like a category an isomorphism shows "the same pattern" of arrows.

These whole categories are isomorphic.

$$
\underset{\text { female people }}{\downarrow} \cong \downarrow_{\text {black people }}^{\downarrow} \cong \downarrow_{\text {poor people }}^{\downarrow}
$$

However:
male people female people

$$
\not \approx
$$

female people
male people

These are also isomorphic.

rich white
rich white men
 cis women
rich white trans women trans wom
rich non-white trans women
 rich non-white
 non-rich white cis women

What equality really means

Equality in category theory is not about when things are the same, but when the category treats them as the same.

What equality really means

Equality in category theory is not about when things are the same, but when the category treats them as the same.

Equality in society should be about society treating people as the same.

