Math for America minicourse

Introduction to Category Theory

Session 1: What is abstract math?

Dr Eugenia Cheng
twitter.com/DrEugeniaCheng
www.eugeniacheng.com/mfa23

Wednesday May 3, 2023

Plan

Session 1: What is abstract math?
Session 2: Sameness
Session 3: Universal properties

Plan for today

1. Introduction
2. Abstraction and analogies
3. Relations
4. Categories
5. Examples: numbers, symmetries, quadrilaterals
6. Examples: factors and privilege.

> 1. Introduction

Pure mathematics is a framework for agreeing on things.

1. Introduction

Pure mathematics is a framework for agreeing on things.

1. Introduction

Pure mathematics is a framework for agreeing on things.

1. Introduction

Pure mathematics is a framework for agreeing on things.

Mathematics is
the study of how things work.

1. Introduction

Pure mathematics is a framework for agreeing on things.

Mathematics is
the study of how logical things work.

1. Introduction

Pure mathematics is a framework for agreeing on things.

Mathematics is
the logical study of how logical things work.

1. Introduction

Pure mathematics is a framework for agreeing on things.

1. Introduction

Pure mathematics is a framework for agreeing on things.

1. Introduction

Pure mathematics is a framework for agreeing on things.

1. Introduction: About me

Previous teaching:

- math majors at research universities
- all students had done very well in high school math
- careers in math, science, engineering, finance, accountancy, law, teaching
- male dominated ($<30 \%$ female).

Previous teaching:

- math majors at research universities
- all students had done very well in high school math
- careers in math, science, engineering, finance, accountancy, law, teaching
- male dominated $(<30 \%$ female).

Current teaching:

- art students at art school (liberal arts)
- many students who did not do well in high school math
- careers in art, design, photography, teaching
- female dominated ($>90 \%$ female).

1. Introduction: Gender vs character in math and beyond
2. Introduction: Gender vs character in math and beyond

Art students: what put them off math?

1. Introduction: Gender vs character in math and beyond

Art students: what put them off math?
memorization
formulae
getting things wrong
art/math false dichotomy
lack of creativity

Art students: what put them off math?

memorization
times tables
formulae
ingressive
congressive
art/math false dichotomy
lack of creativity

Art students: what put them off math?

memorization

> times tables
formulae
ingressive
congressive
art/math false dichotomy
lack of creativity

1. Introduction: Gender vs character in math and beyond

Art students: what put them off math?
memorization

> formulae
getting things wrong
art/math false dichotomy
lack of creativity

It is not a straightforward dichotomy.

1. Introduction: Gender vs character in math and beyond

Art students: what put them off math?
memorization
times tables
formulae
getting things wrong
art/math false dichotomy
lack of creativity

It is not a straightforward dichotomy.

1. Introduction: Gender vs character in math and beyond

This is not a classification of people, but a descriptive characterization of behaviors and interactions.

1. Introduction: Gender vs character in math and beyond

Congressive

This is not a classification of people, but a descriptive characterization of behaviors and interactions.

1. Introduction: Gender vs character in math and beyond

This is not a classification of people, but a descriptive characterization of behaviors and interactions.

1. Introduction: Gender vs character in math and beyond
ingressive math \longrightarrow congressive math
2. Introduction: Gender vs character in math and beyond
ingressive math \longrightarrow congressive math
outcome
facts and rules
solving problems
calculate answers
traditional lecturing
right/wrong
exams and competitions
3. Introduction: Gender vs character in math and beyond
ingressive math \longrightarrow congressive math
outcome
facts and rules
solving problems
calculate answers
traditional lecturing right/wrong
exams and competitions
process
investigation, discovery, choices, reasons
building structures
uncover relationships
project based learning
low floor/high ceiling
festivals and fairs
4. Introduction: Gender vs character in math and beyond
ingressive math \longrightarrow congressive math
outcome facts and rules solving problems calculate answers traditional lecturing right/wrong
exams and competitions
process
investigation, discovery, choices, reasons
building structures
uncover relationships project based learning low floor/high ceiling festivals and fairs

5. Introduction: Gender vs character in math and beyond
ingressive math \longrightarrow congressive math
outcome facts and rules
solving problems
calculate answers
traditional lecturing
right/wrong
exams and competitions
process
investigation, discovery, choices, reasons
building structures
uncover relationships project based learning low floor/high ceiling festivals and fairs

"Now I find that math is not just a tool, and the real reason for learning math is to practice our thinking".
6. Abstraction and analogies

7. Abstraction and analogies

2 apples
2 bananas
2. Abstraction and analogies

2. Abstraction and analogies

Pure mathematics is a theory of analogies

2. Abstraction and analogies

Pure mathematics is a theory of analogies

2 chairs
2. Abstraction and analogies

2. Abstraction and analogies

Pure mathematics is a theory of analogies

2. Abstraction and analogies

Pure mathematics is a theory of analogies

2. Abstraction and analogies

2. Abstraction and analogies

2. Abstraction and analogies

Pure mathematics is a theory of analogies
puff pastry
viruses
2. Abstraction and analogies

Pure mathematics is a theory of analogies

2. Abstraction and analogies

COVID-19
2. Abstraction and analogies
2. Abstraction and analogies

2. Abstraction and analogies
contagious viruses
causing respiratory illness
and fatalities

vaccine is new
no herd immunity
not yet scientific understanding

COVID-19

seasonal flu
2. Abstraction and analogies

The idea of category theory

- relationships
- structure
- context
- nuanced ways to think about sameness
" A is the same age as B " is either true or false.
" A is the same age as B " is either true or false.
Questions: are these true for all $\mathrm{A}, \mathrm{B}, \mathrm{C}$?

1. For all A we have $A \bigcirc A$.
" A is the same age as B " is either true or false.
Questions: are these true for all $\mathrm{A}, \mathrm{B}, \mathrm{C}$?
2. For all A we have $A \bigcirc A$.
3. For all A and B if $A \bigcirc B$, we have $B \bigcirc A$. \longleftarrow symmetric
" A is the same age as B " is either true or false.
Questions: are these true for all A, B, C ?
4. For all A we have $A \bigcirc A$.
reflexive
5. For all A and B if $A \bigcirc B$, we have $B \bigcirc A$. $\}$ symmetric
6. For all A, B, C if $A \bigcirc B$ and $B \bigcirc C$ then $A \bigcirc C$.

" A is the same age as B " is either true or false.
Questions: are these true for all A, B, C ?
7. For all A we have $A \bigcirc A$.
8. For all A and B if $A \bigcirc B$, we have $B \bigcirc A$. $\}$ symmetric
9. For all A, B, C if $A \bigcirc B$ and $B \bigcirc C$ then $A \bigcirc C$.

Try it for is older than
Is this relation reflexive, symmetric, transitive?
" A is the same age as B " is either true or false.
Questions: are these true for all A, B, C ?

1. For all A we have $A \bigcirc A$.

2. For all A and B if $A \bigcirc B$, we have $B \bigcirc A$.

3. For all A, B, C if $A \bigcirc B$ and $B \bigcirc C$ then $A \bigcirc C$.

Try it for is older than
Is this relation reflexive, symmetric, transitive?
Note: A, B, and C can refer to the same person/thing. Eg sisters
" A is the same age as B " is either true or false.
Questions: are these true for all A, B, C ?

1. For all A we have $A \bigcirc A$.

Definition:
If a relation is reflexive, symmetric and transitive it's called an equivalence relation.

Note that these properties only count as true if the condition is true for all objects.

If it sometimes holds and sometimes doesn't, the relation itself does not have the property.

Note: A, B, and C can refer to the same person/thing. Eg sisters
" A is the same age as B " is either true or false.
Questions: are these true for all A, B, C ?

1. For all A we have $A \bigcirc A$.

2. For all A and B if $A \bigcirc$ B, we have $B \bigcirc A$.

3. For all A, B, C
if $A \bigcirc B$ and $B \bigcirc C$ then $A \bigcirc C$.

Try it for is older than
Is this relation reflexive, symmetric, transitive?
Note: A, B, and C can refer to the same person/thing. Eg sisters

Explore
$\begin{array}{ll}\text { i. is the same height as } & \mathrm{R}, \mathrm{S}, \mathrm{T} \\ \text { ii. is taller than } & \mathrm{T}\end{array}$
iii. is mother of
iv. is a friend of
v. is east of
vi. is in an orchestra with S
vii. \leq R, T
viii. is a factor of R, T
ix. is roughly the same as (first create a definition)
3. Relations

Not many things are equivalence relations

Not many things are equivalence relations

Further: An equivalence relation is just a partition of the set into subsets with no overlap.

Not many things are equivalence relations

Further: An equivalence relation is just a partition of the set into subsets with no overlap.

Categories allow for more general kinds of relation so that we can include more examples like

- equivalence relations
- \leq
- a factor of
- functions
- matrices
- symmetry
- paths in a space
-

4. Categories
5. Categories

Definition: a category \mathcal{C} consists of:
4. Categories

Definition: a category \mathcal{C} consists of:

Data

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Structure

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Structure

- identities: for all objects a
an identity arrow $a \xrightarrow{1_{a}} a$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Structure

- identities: for all objects a
an identity arrow $a \xrightarrow{1_{a}} a$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Structure like reflexivity

- identities: for all objects a
an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$
$a \longrightarrow b$

Structure
 like reflexivity

- identities: for all objects a
an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$
like transitivity

Definition: a category \mathcal{C} consists of:

Properties (axioms)

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$ $a \longrightarrow b$

Structure

 like reflexivity- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$ like transitivity

Definition: a category \mathcal{C} consists of:

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$ $a \longrightarrow b$

Structure

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{\text { gof }} c$ like transitivity

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$ $a \longrightarrow b$

Structure

like reflexivity

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$ like transitivity

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
a \xrightarrow{1_{a}} a \xrightarrow{f} b \quad=a \xrightarrow{f} b
$$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$ $a \longrightarrow b$

Structure

like reflexivity

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{g \circ f} c$ like transitivity

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
\begin{aligned}
a \xrightarrow{1_{a}} a \xrightarrow{f} b & =a \xrightarrow{f} b \\
a \xrightarrow{f} b \xrightarrow{1_{b}} b & =a \xrightarrow{f} b
\end{aligned}
$$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$

$$
a \longrightarrow b
$$

Structure

like reflexivity

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{\text { gof }} c$

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
\begin{aligned}
a \xrightarrow{1_{a}} a \xrightarrow{f} b & =a \xrightarrow{f} b \\
a \xrightarrow{f} b \xrightarrow{1_{b}} b & =a \xrightarrow{f} b
\end{aligned}
$$

- associativity: given $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob C
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$ $a \longrightarrow b$

Structure

like reflexivity

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{\text { gof }} c$

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
\begin{aligned}
a \xrightarrow{1_{a}} a \xrightarrow{f} b & =a \xrightarrow{f} b \\
a \xrightarrow{f} b \xrightarrow{1_{b}} b & =a \xrightarrow{f} b
\end{aligned}
$$

- associativity: given $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

What happened to symmetry?

Definition: a category \mathcal{C} consists of:

Data

- a set of objects ob \mathcal{C}
- for all $a, b \in$ ob \mathcal{C} a set of arrows $\mathcal{C}(a, b)$

$$
a \longrightarrow b
$$

Structure

like reflexivity

- identities: for all objects a an identity arrow $a \xrightarrow{1_{a}} a$
- composition: given $a \xrightarrow{f} b \xrightarrow{g} c$
a composite arrow $a \xrightarrow{\text { gof }} c$

Properties (axioms)

- unit: given $a \xrightarrow{f} b$

$$
\begin{aligned}
a \xrightarrow{1_{a}} a \xrightarrow{f} b & =a \xrightarrow{f} b \\
a \xrightarrow{f} b \xrightarrow{1_{b}} b & =a \xrightarrow{f} b
\end{aligned}
$$

- associativity: given $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} d$

$$
(h \circ g) \circ f=h \circ(g \circ f)
$$

What happened to symmetry?
We don't demand it but we look for it afterwards. This is the notion of "sameness" in a category.

Note: arrows are also called morphisms or maps

In a way composition is the whole point of a category. It is what makes it more than a flow chart.

Good, stay at home.
5. Examples: numbers

Numbers

We could take

- objects: natural numbers
- morphisms: $a \longrightarrow b$ whenever $a \leq b$

Numbers

We could take

- objects: natural numbers
- morphisms: $a \longrightarrow b$ whenever $a \leq b$

Thoughts.
i. Try drawing this category. Remember to omit unnecessary arrows.
ii. Infinity is not in this category. Why? If we put it in, where will it go?
iii. Why do we have to use \leq and not $<$ for this to be a category?
5. Examples: numbers
$-\infty$

Numbers

We could take

- objects: natural numbers
- morphisms: $a \longrightarrow b$ whenever $a \leq b$

Thoughts.
i. Try drawing this category. Remember to omit unnecessary arrows.
ii. Infinity is not in this category. Why? If we put it in, where will it go?
iii. Why do we have to use \leq and not $<$ for this to be a category?

5. Examples: symmetries

We can regard symmetry as a relation
5. Examples: symmetries

We can regard symmetry as a relation

5. Examples: symmetries

We can regard symmetry as a relation
5. Examples: symmetries

We can regard symmetry as a relation
5. Examples: symmetries

We can regard symmetry as a relation

	0	90	180	270
0				
90			270	0
180				
270				

5. Examples: symmetries

We can regard symmetry as a relation

Fill in the rest of the table.
i. Do you see a pattern? Does it remind you of anything? If so, why?
ii. Theorize? Generalize?

5. Examples: quadrilaterals

Quadrilaterals
rectangles
squares
square $\xrightarrow{\text { special case of }}$ rectangle
5. Examples: quadrilaterals

Quadrilaterals

square $\xrightarrow{\text { special case of }}$ rectangle
rhombus $\xrightarrow{\text { special case of }}$ parallelogram
Try putting all types of quadrilateral in a diagram. Remember to omit unnecessary arrows.
i. What actual process is happening along each arrow?
ii. Where are there two different paths between the same things?
iii. What are some reasons to draw it like this instead of a Venn diagram?

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b

1,
6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b

1, 2,
6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
1, 2, 3,

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5$,

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6$,

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10$,

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10,15$,

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10,15,30$

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10,15,30$

30

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10,15,30$

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10,15,30$

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever
a is a multiple of b
$1,2,3,5,6,10,15,30$

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever a is a multiple of b
$1,2,3,5,6,10,15,30$

6. Examples: Factors and privilege

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever a is a multiple of b
$1,2,3,5,6,10,15,30$

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever a is a multiple of b
$1,2,3,5,6,10,15,30$

Try some yourself
a) 6
d) 70
g) 24
b) 10
e) 42
h) hard: 60, 210
c) 8
f) 12
i) any number you like

- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever a is a multiple of b
$1,2,3,5,6,10,15,30$

Try some yourself
a) 6
d) 70
g) 24
b) 10
e) 42
h) hard: 60, 210
c) 8
f) 12
i) any number you like

Some things to remember

- Each factor is drawn only once.
- We don't draw arrows that are redundant.
- objects: factors of 30
- morphisms: $a \longrightarrow b$ whenever a is a multiple of b
$1,2,3,5,6,10,15,30$

Try some yourself
a) 6
d) 70
g) 24
b) 10
e) 42
h) hard: 60,210
c) 8
f) 12
i) any number you like

Some things to remember

- Each factor is drawn only once.
- We don't draw arrows that are redundant.

Questions

What shapes are produced?
Why do some numbers produce the same shapes?
What is going on and why?
6. Examples: Factors and privilege

Examples

$$
6: 1,2,3,6
$$

6. Examples: Factors and privilege

Examples

$$
6: 1,2,3,6 \quad 10: 1,2,5,10
$$

6. Examples: Factors and privilege

Examples

$6: 1,2,3,6$	$10: 1,2,5,10$
$6=2 \times 3$	$10=2 \times 5$

6. Examples: Factors and privilege

Examples

$6: 1,2,3,6$	10	$: 1,2,5,10$
$6=2 \times 3$	$10=2 \times 5$	$30=2 \times 3 \times 5$

\longleftarrow primes

6. Examples: Factors and privilege

Examples

$6: 1,2,3,6$	10	$: 1,2,5,10$
$6=2 \times 3$	$10=2 \times 5$	$30=2 \times 3 \times 5$

6. Examples: Factors and privilege

Examples

$6: 1,2,3,6$	10	$: 1,2,5,10$
$6=2 \times 3$	$10=2 \times 5$	$30=2 \times 3 \times 5$

product of 3 primes
products of 2 primes primes
product of 0 primes
6. Examples: Factors and privilege

Examples

$$
12=2 \times 2 \times 3
$$

6. Examples: Factors and privilege

Examples

$12=2 \times 2 \times 3$

6. Examples: Factors and privilege

Examples

$12=2 \times 2 \times 3$

6. Examples: Factors and privilege

Examples

$12=2 \times 2 \times 3$

6. Examples: Factors and privilege

Examples

$12=2 \times 2 \times 3$
$24=2 \times 2 \times 2 \times 3$

6. Examples: Factors and privilege

Examples

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& 24=2 \times 2 \times 2 \times 3
\end{aligned}
$$

6. Examples: Factors and privilege

Examples

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& 24=2 \times 2 \times 2 \times 3
\end{aligned}
$$

6. Examples: Factors and privilege

Examples

$$
12=2 \times 2 \times 3 \quad 36=2 \times 2 \times 3 \times 3
$$

$$
24=2 \times 2 \times 2 \times 3
$$

Examples

$$
\begin{array}{ll}
12=2 \times 2 \times 3 & 36=2 \times 2 \times 3 \times 3 \\
24=2 \times 2 \times 2 \times 3 &
\end{array}
$$

6. Examples: Factors and privilege

Examples

$$
\begin{array}{ll}
12=2 \times 2 \times 3 & 36=2 \times 2 \times 3 \times 3 \\
24=2 \times 2 \times 2 \times 3 &
\end{array}
$$

6. Examples: Factors and privilege

Examples

$$
\begin{array}{ll}
12=2 \times 2 \times 3 & 36=2 \times 2 \times 3 \times 3 \\
24=2 \times 2 \times 2 \times 3 &
\end{array}
$$

- Number of dimensions

$$
\begin{aligned}
& \text { number of distinct } \\
& \text { prime factors }
\end{aligned}
$$

6. Examples: Factors and privilege

Examples

$$
\begin{array}{ll}
12=2 \times 2 \times 3 & 36=2 \times 2 \times 3 \times 3 \\
24=2 \times 2 \times 2 \times 3 &
\end{array}
$$

- Number of dimensions

> number of distinct prime factors

- Lengths of paths
number of repetitions of prime factors

6. Examples: Factors and privilege

Factors of 42
6. Examples: Factors and privilege

Factors of 42
$1,2,3,6,7,14,21,42$
6. Examples: Factors and privilege

Factors of 42

$$
1,2,3,6,7,14,21,42
$$

6. Examples: Factors and privilege

Factors of 42

$$
1,2,3,6,7,14,21,42
$$

6. Examples: Factors and privilege

Factors of 42

$$
1,2,3,6,7,14,21,42
$$

6. Examples: Factors and privilege

Factors of 42
$1,2,3,6,7,14,21,42$

6. Examples: Factors and privilege

Factors of 42
$1,2,3,6,7,14,21,42$

6. Examples: Factors and privilege

Factors of 42

$$
1,2,3,6,7,14,21,42
$$

6. Examples: Factors and privilege
rich white male
6. Examples: Factors and privilege
rich white
6. Examples: Factors and privilege
rich white
rich male
6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

6. Examples: Factors and privilege

Abstraction has a point.

We gain:

- broader perspective,
- deeper understanding,
- wider applicability, and
- more connections between things.

