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Pure mathematics is a framework for agreeing on things.

pure mathematics

applied mathematics

science

engineering, medicine,. . .

quantitative world

how to think

human world

Mathematics is

the logical study of how logical things work.

logical
things

alogical
things

logical
study

alogical
study

math

What other things can you think of?

philosophy

numerology astrology
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1. Introduction: About me

Previous teaching:

• math majors at research universities

• all students had done very well in high school math

• careers in math, science, engineering, finance, accountancy, law, teaching

• male dominated (< 30% female).

Current teaching:

• art students at art school (liberal arts)

• many students who did not do well in high school math

• careers in art, design, photography, teaching

• female dominated (> 90% female).
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1. Introduction: Gender vs character in math and beyond

Ingressive

focusing on oneself

imposing on people

independence and individualism

competitive and adversarial

selective or single-track

focusing on society and community

taking others into account

interdependence and connectedness

collaborative and cooperative

circumspect

Congressive

This is not a classification of people,
but a descriptive characterization of behaviors and interactions.
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1. Introduction: Gender vs character in math and beyond

ingressive math congressive math

outcome process

facts and rules investigation, discovery, choices, reasons

solving problems building structures

calculate answers uncover relationships

traditional lecturing project based learning

right/wrong low floor/high ceiling

exams and competitions festivals and fairs

“Now I find that math is not just a tool, and the real
reason for learning math is to practice our thinking”.
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Pure mathematics is a theory of analogies

a + b

1 + 2 2 + 3

a × b

1× 2 2× 3

a ⊙ b

a ◦ b

functions relations matrices homotopies · · · life
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2. Abstraction and analogies

COVID-19 seasonal flu

contagious viruses
causing respiratory illness

and fatalities

vaccine is new
no herd immunity

not yet scientific understanding

10.



2. Abstraction and analogies

The idea of category theory

• relationships

• structure

• context

• nuanced ways to think about sameness

11.
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For all A
we have A tt A.

2.
symmetric

�

For all A and B

if A tt B, we have B tt A.

3.

transitive







For all A, B, C

if A tt B and B tt C
then A tt C.

Try it for is older than .

Is this relation reflexive, symmetric, transitive?

Note: A, B, and C can refer to the same per-
son/thing. Eg sisters

Definition:

If a relation is reflexive, symmetric and
transitive it’s called an equivalence relation.

Note that these properties only count as true if
the condition is true for all objects.

If it sometimes holds and sometimes doesn’t, the
relation itself does not have the property.
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3. Relations

“A is the same age as B” is either true or false.

Questions: are these true for all A, B, C?

1.
reflexive

�

For all A
we have A tt A.

2.
symmetric

�

For all A and B

if A tt B, we have B tt A.

3.

transitive







For all A, B, C

if A tt B and B tt C
then A tt C.

Try it for is older than .

Is this relation reflexive, symmetric, transitive?

Note: A, B, and C can refer to the same per-
son/thing. Eg sisters

Explore

i. is the same height as

ii. is taller than

iii. is mother of

iv. is a friend of

v. is east of

vi. is in an orchestra with

vii. ≤

viii. is a factor of

ix. is roughly the same as (first create a
definition)

13.
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3. Relations

Not many things are equivalence relations

Further: An equivalence relation is just a parti-
tion of the set into subsets with no overlap.

Categories allow for more general kinds of rela-
tion so that we can include more examples like

• equivalence relations

• ≤

• a factor of

• functions

• matrices

• symmetry

• paths in a space

•
...

14.
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Definition: a category C consists of:

Data

• a set of objects obC

• for all a, b ∈ obC a set of arrows C(a, b)

a b

Structure

• identities: for all objects a

an identity arrow a
1a

a

like reflexivity

• composition: given a
f

b
g

c

a composite arrow a
g◦f

c

like transitivity

Properties (axioms)

• unit: given a
f

b

a
1a

a
f

b = a
f

b

a
f

b
1b

b = a
f

b

• associativity: given a
f

b
g

c
h

d

(h ◦ g) ◦ f = h ◦ (g ◦ f )

What happened to symmetry?

We don’t demand it but we look for it afterwards.
This is the notion of “sameness” in a category.

Note: arrows are also called morphisms or maps

15.



4. Categories

In a way composition is the whole point of a category.
It is what makes it more than a flow chart.

Are you at home?No Yes

Please go home

And now, are you at home? No

Yes

Good, stay at home.

16.
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5. Examples: symmetries

We can regard symmetry as a relation

90◦

90◦ 180◦

270◦

=

90◦ 270◦

0◦

=

0 90 180 270

0

90 270 0

180

270

Fill in the rest of the table.

i. Do you see a pattern? Does it remind you
of anything? If so, why?

ii. Theorize? Generalize?

18.
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rhombus parallelogram
special case of
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5. Examples: quadrilaterals

Quadrilaterals

squares

rectangles square rectangle
special case of

rhombus parallelogram
special case of

Try putting all types of quadrilateral in a dia-
gram. Remember to omit unnecessary arrows.

i. What actual process is happening along
each arrow?

ii. Where are there two different paths
between the same things?

iii. What are some reasons to draw it like this
instead of a Venn diagram?

19.
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6. Examples: Factors and privilege

• objects: factors of 30

• morphisms: a b whenever
a is a multiple of b

1, 2, 3, 5, 6, 10, 15, 30

30

15106

52 3

1

Try some yourself

a) 6

b) 10

c) 8

d) 70

e) 42

f) 12

g) 24

h) hard: 60, 210

i) any number you like

Some things to remember

• Each factor is drawn only once.

• We don’t draw arrows that are redundant.

Questions
What shapes are produced?

Why do some numbers produce the same shapes?
What is going on and why?
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Examples

12 = 2 × 2× 3

32
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24 = 2 × 2× 2× 3

24

8

8 = 2× 2× 2

36 = 2× 2× 3 × 3

12

4 6

32

1

36

18

9

• Number of dimensions
=

number of distinct
prime factors

• Lengths of paths
=

number of repetitions of
prime factors
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Factors of 42

1, 2, 3, 6, 7, 14, 21, 42
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Conclusion

Abstraction has a point.

We gain:

• broader perspective,

• deeper understanding,

• wider applicability, and

• more connections between things.
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