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• A toset (totally ordered set) has exactly one morphism
between any two objects.

0 1 2 3 · · ·

• By contrast a poset can have incomparable elements.

• Functors between posets are order-preserving functions
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• We can pick any n types of privilege

• We can restrict context and consider types of
privilege there eg women: rich, white, cis.

Next: incorporate more nuance
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• Instead of morphisms being true/false
assertions they will now be real numbers.

• We enrich our category in R≥0.

• We also need to include ∞ for
incomparable elements.

This is a generalised metric space.

Definition (Lawvere)

There is a monoidal category [0,∞] with

• objects: R≥0 ∪ {∞}

• morphisms: x y whenever x ≥ y

• ⊗ is +

[0,∞]-categories are generalised metric spaces.

• A set of objects A0.

• For all a, b ∈ A0, A(a, b) ∈ [0,∞]

• Composition: A(b, c) + A(a, b)
≥

A(a, c)

• Identities: 0
≥

A(a, a)

Crucial: no symmetry requirement.
Privilege is not symmetric.
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In life we tend to apply F too much, turning
a continuum of gray into black-and-white
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4. Other examples: Arte Útil

• Society

• Environment

• Activism

• Transformation

SEA

SEAT

EAT

ET

TS

SA

SAT

EA

SET

AT

E

ST

A

SE
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male ⋊ Black

confident ⋊ female

in math: female ⋊ queer

among women: childless ⋊ not by choice

2. When oppression and thus liberation apply to different groups of people in opposite directions

marriage: straight women gay people

women showing flesh: white women Black women

gay men showing flesh: white gay men Black gay men

clothing and appearance: women in general women in math

3. Why we too often don’t weigh up both cost and benefit.

the math we want children to learn the math-aversion it causes

the tax we pay the services society receives

attending a conference in person: the harm we do the good we do

13.


