Privilege structures and generalised metric spaces

Eugenia Cheng

School of the Art Institute of Chicago
Twitter: @DrEugeniaCheng

Slides: eugeniacheng.com/jmm23

Plan

1. The cuboid of privilege
2. Posets
3. Generalised metric spaces
4. Other examples
5. The cuboid of privilege
6. The cuboid of privilege

Factors of 30

1. The cuboid of privilege

Factors of 30
$1,2,3,5,6,10,15,30$

1. The cuboid of privilege

Factors of 30
$1,2,3,5,6,10,15,30$

1. The cuboid of privilege

Factors of 30
$1,2,3,5,6,10,15,30$

1. The cuboid of privilege

Factors of 30

$$
1,2,3,5,6,10,15,30
$$

1. The cuboid of privilege

Factors of 42
$1,2,3,6,7,14,21,42$

1. The cuboid of privilege

Factors of 42
$1,2,3,6,7,14,21,42$

1. The cuboid of privilege

Factors of 42
$1,2,3,6,7,14,21,42$

1. The cuboid of privilege

Factors of 42
$1,2,3,6,7,14,21,42$

$6<7$

1. The cuboid of privilege
rich white male

2. The cuboid of privilege

1. The cuboid of privilege

1. The cuboid of privilege

1. The cuboid of privilege

1. The cuboid of privilege

2. Posets: partially ordered sets
3. Posets: partially ordered sets

A poset is a category with at most one arrow between any two objects
2. Posets: partially ordered sets

A poset is a category with at most one arrow between any two objects

- Morphisms are "assertions".
- For numbers with distinct prime factors, we get the power set poset.
- For numbers with repeated factors...

2. Posets: partially ordered sets

A poset is a category with at most one arrow between any two objects

- Morphisms are "assertions".
- For numbers with distinct prime factors, we get the power set poset.
- For numbers with repeated factors...

2. Posets: partially ordered sets

A poset is a category with at most one arrow between any two objects

- Morphisms are "assertions".
- For numbers with distinct prime factors, we get the power set poset.
- For numbers with repeated factors...

- A toset (totally ordered set) has exactly one morphism between any two objects.

$$
0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots
$$

- By contrast a poset can have incomparable elements.
- Functors between posets are order-preserving functions

2. Posets: partially ordered sets

The category of posets has products but the category of tosets does not
2. Posets: partially ordered sets

The category of posets has products but the category of tosets does not

2. Posets: partially ordered sets

The category of posets has products but the category of tosets does not

There is no canonical way to put a total order on the product.

In life we have a tendency to try to make things into tosets when they should be posets.

Write I for the directed interval poset $1 \longrightarrow 0$.
Then the cube of privilege "is" I^{3}.

2. Posets: partially ordered sets

The category of posets has products but the category of tosets does not

There is no canonical way to put a total order on the product.

In life we have a tendency to try to make things into tosets when they should be posets.

Write I for the directed interval poset $1 \longrightarrow 0$.
Then the cube of privilege "is" I^{3}.

- We can pick any n types of privilege
- We can restrict context and consider types of privilege there eg women: rich, white, cis.

Next: incorporate more nuance
3. Generalised metric spaces
3. Generalised metric spaces

3. Generalised metric spaces

Idea: we want to weight the different privileges with real numbers
3. Generalised metric spaces

Idea: we want to weight the different privileges with real numbers

rich	white	male
$\downarrow^{\downarrow} \alpha$	\downarrow^{2}	\downarrow^{\downarrow}
non-rich	non-white	non-male

- Instead of morphisms being true/false assertions they will now be real numbers.
- We enrich our category in $\mathbb{R}_{\geq 0}$.
- We also need to include ∞ for incomparable elements.

This is a generalised metric space.

3. Generalised metric spaces

Idea: we want to weight the different privileges with real numbers

rich	white	male
$\downarrow_{\text {non-rich }}{ }^{2}$	\downarrow^{\downarrow}	\downarrow^{\downarrow}
non-white	non-male	

- Instead of morphisms being true/false assertions they will now be real numbers.
- We enrich our category in $\mathbb{R}_{\geq 0}$.
- We also need to include ∞ for incomparable elements.

Definition (Lawvere)

There is a monoidal category $[0, \infty]$ with

- objects: $\mathbb{R}_{\geq 0} \cup\{\infty\}$
- morphisms: $x \longrightarrow y$ whenever $x \geq y$
- \otimes is +

3. Generalised metric spaces

Idea: we want to weight the different privileges with real numbers

$\downarrow^{\text {rich }}$
non-rich

non-white

- Instead of morphisms being true/false assertions they will now be real numbers.
- We enrich our category in $\mathbb{R}_{\geq 0}$.
- We also need to include ∞ for incomparable elements.

Definition (Lawvere)

There is a monoidal category $[0, \infty]$ with

- objects: $\mathbb{R}_{\geq 0} \cup\{\infty\}$
- morphisms: $x \longrightarrow y$ whenever $x \geq y$
- \otimes is +
$[0, \infty]$-categories are generalised metric spaces.
- A set of objects A_{0}.
- For all $a, b \in A_{0}, A(a, b) \in[0, \infty]$

This is a generalised metric space.

Idea: we want to weight the different privileges with real numbers

$\stackrel{\text { rich }}{\downarrow}$
non-rich

- Instead of morphisms being true/false assertions they will now be real numbers.
- We enrich our category in $\mathbb{R}_{\geq 0}$.
- We also need to include ∞ for incomparable elements.

This is a generalised metric space.

Definition (Lawvere)

There is a monoidal category $[0, \infty]$ with

- objects: $\mathbb{R}_{\geq 0} \cup\{\infty\}$
- morphisms: $x \longrightarrow y$ whenever $x \geq y$
- \otimes is +
$[0, \infty]$-categories are generalised metric spaces.
- A set of objects A_{0}.
- For all $a, b \in A_{0}, A(a, b) \in[0, \infty]$
- Composition: $A(b, c)+A(a, b) \xrightarrow{\geq} A(a, c)$
- Identities: $0 \xrightarrow{\geq} A(a, a)$

Crucial: no symmetry requirement.
Privilege is not symmetric.
3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories.

Remember \otimes is + .
3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories. Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories. Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories. Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories.

Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories.

Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories. Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

3. Generalised metric spaces

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories. Remember \otimes is + .

The \otimes on $[0, \infty]$ is symmetric so we can take \otimes of $[0, \infty]$-categories.

Remember \otimes is + .

- $(A \otimes B)_{0}=A_{0} \times B_{0}$
- $(A \otimes B)\left((a, b),\left(a^{\prime}, b^{\prime}\right)\right)=A\left(a, a^{\prime}\right) \otimes B\left(b, b^{\prime}\right)$

rich white male

3. Generalised metric spaces

This gives many possibilities for nuance
3. Generalised metric spaces

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.

3. Generalised metric spaces

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.

3. Generalised metric spaces

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.
- We can depict different levels of racial oppression.

It's still a simplification, but less so

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.
- We can depict different levels of racial oppression.

It's still a simplification, but less so

Posets are just enriched in truth values

- Write $\mathcal{2}$ for the category $\perp \longrightarrow T$.
- This has \otimes given by $\wedge \quad$ Precisely:
- Posets are categories enriched in $2 \quad \begin{aligned} & \text { 2-categories } \\ & \text { are }\end{aligned}$

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.
- We can depict different levels of racial oppression.

It's still a simplification, but less so

Posets are just enriched in truth values

- Write $\mathcal{2}$ for the category $\perp \longrightarrow T$.
- This has \otimes given by $\wedge \quad$ Precisely:
- Posets are categories enriched in $2 \quad \begin{aligned} & \text {-categories } \\ & \text { are preorders }\end{aligned}$

There is a monoidal adjunction giving change of base between posets and generalised metric spaces

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.
- We can depict different levels of racial oppression.

It's still a simplification, but less so

Posets are just enriched in truth values

- Write $\mathcal{2}$ for the category $\perp \longrightarrow T$.
- This has \otimes given by $\wedge \quad$ Precisely:
- Posets are categories enriched in $2 \quad \begin{aligned} & \text { 2-categories } \\ & \text { are preorders }\end{aligned}$

There is a monoidal adjunction giving change of base between posets and generalised metric spaces

$$
G:\left\{\begin{array}{llc}
\perp & \longmapsto & \infty \\
\top \longmapsto & 0
\end{array}\right.
$$

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.
- We can depict different levels of racial oppression.

It's still a simplification, but less so

Posets are just enriched in truth values

- Write $\mathcal{2}$ for the category $\perp \longrightarrow T$.
- This has \otimes given by $\wedge \quad$ Precisely:
- Posets are categories enriched in $2 \quad \begin{aligned} & \mathbb{E} \text {-categories } \\ & \text { are preorders }\end{aligned}$

There is a monoidal adjunction giving change of base between posets and generalised metric spaces

$$
G:\left\{\begin{array}{lll}
\perp & \infty \\
\top \longmapsto & 0
\end{array}\right.
$$

$$
\left.\begin{array}{lc}
\perp \longleftrightarrow \infty \\
\top \longleftrightarrow & \text { finite }
\end{array}\right\}: F
$$

This gives many possibilities for nuance

- We can allow for different opinions about how things are weighted.
- We could include all levels of wealth instead of just two or n discrete ones.
- We can depict different levels of racial oppression.

It's still a simplification, but less so

Posets are just enriched in truth values

- Write $\mathcal{2}$ for the category $\perp \longrightarrow T$.
- This has \otimes given by \wedge

Precisely:

- Posets are categories enriched in $2 \quad \begin{aligned} & \text { 2-categories } \\ & \text { are preorders }\end{aligned}$

There is a monoidal adjunction giving change of base between posets and generalised metric spaces

$$
G:\left\{\begin{array}{ll}
\perp \longmapsto \infty & \perp \longleftrightarrow \infty \\
\top \longmapsto 0 & \top \longleftrightarrow \text { finite }
\end{array}\right\}: F
$$

In life we tend to apply F too much, turning a continuum of gray into black-and-white
4. Other examples: fallacious arguments

4. Other examples: fallacious arguments

4. Other examples: Arte Útil

- Society
- Environment
- Activism
- Transformation

4. Other examples

Some things I would like to work out how to address categorically:

4. Other examples

Some things I would like to work out how to address categorically:

1. When privilege reverses in certain contexts: some sort of twisted tensor product?

	male	\rtimes Black
in math:	confident	\rtimes female
female	\rtimes queer	
among women:	childless	\rtimes not by choice

4. Other examples

Some things I would like to work out how to address categorically:

1. When privilege reverses in certain contexts: some sort of twisted tensor product?

	male	\rtimes Black
in math:	confident	\rtimes female
female	\rtimes queer	
among women:	childless	\rtimes not by choice

2. When oppression and thus liberation apply to different groups of people in opposite directions
marriage:
women showing flesh:
gay men showing flesh:
clothing and appearance:
straight women
white women
white gay men \longleftrightarrow Black gay men
women in general \longleftrightarrow women in math

4. Other examples

Some things I would like to work out how to address categorically:

1. When privilege reverses in certain contexts: some sort of twisted tensor product?

	male	\rtimes Black
in math:	confident	\rtimes female
female	\rtimes queer	
among women:	childless	\rtimes not by choice

2. When oppression and thus liberation apply to different groups of people in opposite directions

3. Why we too often don't weigh up both cost and benefit.
the math we want children to learn \longleftrightarrow the math-aversion it causes the tax we pay \longleftrightarrow the services society receives
attending a conference in person: the harm we do \longleftrightarrow the good we do
