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Summary

The problem of defining a weak n-category has been approached in
various different ways, but so far the relationship between these approaches
has not been fully understood. The subject of this thesis is the ‘opetopic’
theory of n-categories, embracing a group of definitions based on the theory
of ‘opetopes’.

This approach was first proposed by Baez and Dolan, and further ap-
proaches to the theory have been proposed by Hermida, Makkai and Power,
and Leinster.

The opetopic definition of n-category has two stages. First, the language
for describing k-cells is set up; this, in the language of Baez and Dolan, is
the theory of opetopes. Then, a concept of universality is introduced, to
deal with composition and coherence.

We first exhibit an equivalence between the three theories of opetopes as
far as they have been proposed. We then give an explicit description of the
category Opetope of opetopes. We also give an alternative presentation
of the construction of opetopes using the ‘allowable graphs’ of Kelly and
Mac Lane.

The underlying data for an opetopic n-category is given by an opetopic
set. The category of opetopic sets is described explicitly by Baez and
Dolan; we prove that this category is in fact equivalent to the category of
presheaves on Opetope.

We then turn our attention to the full definition of (weak) n-categories.
We define for each n a category Opic-n-Cat of opetopic n-categories and
‘lax n-functors’. We then examine low-dimensional cases, and exhibit an
equivalence between the opetopic and classical theories for the cases n ≤
2, giving in particular an equivalence between the opetopic and classical
approaches to bicategories.

Finally we present some further discussion on the subject of universal-
ity. There are many ways of characterising universal cells; we propose an
alternative characterisation to the one proposed by Baez and Dolan.
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Introduction

The problem of defining a weak n-category has been approached in var-
ious different ways ([BD2], [HMP1], [Lei2], [Pen], [Bat], [Tam], [Str2],
[May], [Lei6]), but so far the relationship between these approaches has
not been fully understood. The subject of this thesis is the ‘opetopic’ the-
ory of n-categories, embracing a group of definitions based on the theory
of ‘opetopes’.

This approach was first proposed by Baez and Dolan [BD2], and further
approaches to the theory have been proposed by Hermida, Makkai and
Power [HMP1] and Leinster [Lei2]. We first exhibit an equivalence between
these three theories as far as they have been proposed. We then give an
explicit description of the category Opetope of opetopes and the category
OSet of opetopic sets, which give the data for the full definition of opetopic
n-category.

We then examine low-dimensional cases, and exhibit an equivalence
between the opetopic and classical theories for the cases n ≤ 2. Finally
we propose an alternative approach to characterising universality, a key
component of the opetopic theory.

The opetopic definition of n-category has two stages. First, the language
for describing k-cells is set up; this, in the language of Baez and Dolan, is
the theory of opetopes. Then, a concept of universality is introduced, to
deal with composition and coherence.

Any comparison of these approaches must therefore begin at the lan-
guage for describing k-cells, and this is the subject of the first part of this
work. In [BD2] Baez and Dolan give a definition of weak n-categories based
on operads, opetopes and opetopic sets. In [HMP1] Hermida, Makkai and
Power begin an explicitly analogous definition, based on (generalised) mul-
ticategories, multitopes and multitopic sets. The analogous components of
the construction can therefore be compared step by step.

In [Lei2], Leinster gives an approach based on (E , T )-multicategories;
these structures were defined by Burroni [Bur] and have also been treated by
Hermida [Her]. The role that these (even more generalised) multicategories
plays is not explicitly analogous to that of operads and multicategories in
the opetopic and multitopic versions respectively, so the comparison is more
subtle. Leinster does, however, give a construction of ‘opetopes’ with a role
analogous to that of Baez-Dolan opetopes; we are also able to compare these
constructions, having established the relationship between the underlying
theories.

It must be pointed out that we do not use the opetopic definitions pre-
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cisely as given in [BD2], but rather, we develop a generalisation along lines
which Baez and Dolan began but chose to abandon, for reasons unknown to
the present author. Baez and Dolan work with operads having an arbitrary
set of types (objects), but at the beginning of the paper they use operads
having an arbitrary category of objects, before restricting to the case where
the category of objects is small and discrete.

In fact, the use of a category of objects is a crucial aspect of our work.
A conspicuous difference between the approach given in [BD2] and those
of [HMP1] and [Lei2] is the presence in the first case, and the absence in
the others, of symmetric actions. As cells of each dimension are succes-
sively constructed, so successive layers of symmetry are added in, appar-
ently increasing the disparity between the symmetric and non-symmetric
constructions.

However, the morphisms of the category of objects keep account of these
successive layers of symmetry. Abandoning this information destroys the
relationship between the approaches; by retaining it, a clear relationship
can be seen.

We first compare the theories of opetopes step by step. We begin in
Chapter 1 by comparing the different underlying theories of multicategories,
and then in Chapter 2 we examine the construction of opetopes. In Sec-
tion 2.1 we compare the process of constructing (k + 1)-cells from k-cells,
called ‘slicing’ in [BD2]. In Section 2.3 we apply the results to the construc-
tion of k-cell shapes themselves, to show that ‘opetopes and multitopes are
the same up to isomorphism’. That is, the categories of k-dimensional
opetopes, multitopes, and Leinster opetopes are equivalent.

In Chapter 3 we give an explicit description of the category Opetope
of opetopes, which will enable us, in Chapter 4, to prove that the category
of opetopic sets is in fact a presheaf category.

We then turn our attention to the full definition of (weak) n-categories.
In Chapter 5 we follow through the effects of our previous modifications
to modify the rest of the definition as proposed by Baez and Dolan. We
define for each n a category Opic-n-Cat of opetopic n-categories and ‘lax
n-functors’. Lax functors are in fact a more general (lax) notion than that
of n-functor given in [BD2]; further questions of strictness are discussed
later.

In fact, Hermida, Makkai and Power, and Leinster do not appear to
have developed their theories to a full definition of n-category, so further
possible comparisons with these approaches are limited; instead, we make a
comparison with the classical theory. Any proposed definition of n-category
should at least be in some way equivalent to the classical definitions as far as
the latter are understood. In Section 5.2 we exhibit such equivalence for the
cases n ≤ 2, the main theorem giving an equivalence between the opetopic
and classical approaches to bicategories. In comparing these theories there
are two main issues:

1) An opetopic 2-category has m-ary 2-cells for all m ≥ 0, that is, a 2-
cell may have a string of m composable 1-cells as its domain; however
a 2-cell in a bicategory has only one 1-cell as its domain.
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2) In an opetopic 2-category 1-cell composition is not uniquely defined;
however, in a bicategory m-fold composition is uniquely defined for
m = 0, 2 (identities are considered as 0-fold composites).

So in one direction we must generate sets of m-cells, and in the other we
must make some choices to specify nullary and binary composites.

To complete our understanding of opetopic n-categories, we would at
least wish to construct an (n + 1)-category of n-categories, but we do not
address this matter here. In fact, in Section 5.2 we do not need 3- or even 2-
dimensional structures to make a comparison with the classical theory; we
prove an equivalence of categories, making a comparison already possible
with only the 1-dimensional structure defined above.

We conclude the chapter with a brief discussion about notions of strict-
ness in the opetopic theory. We demonstrate that, while the definition of
‘lax n-functor’ strictifies easily to ‘weak n-functor’ and ‘strict n-functor’,
the definition of ‘weak n-category’ neither laxifies nor strictifies easily.

Finally in Chapter 6 we present some further discussion on the subject
of universality. There are many ways of characterising universal cells, just
as there are many ways of characterising, say, isomorphisms in a category.
We propose an alternative characterisation to the one given in Chapter 5.

The idea is to generalise the familiar result in categories, that f is an
isomorphism if and only if composition with f is an isomorphism. Here
“composition with f” is a function on homsets; however, a feature of the
opetopic definition of n-category is that composition is not uniquely defined,
that is, ◦ f is not a well-defined operation. One way of dealing with this
would be to choose composites in order to make ◦ f into an operation.
This is the process of choosing universal cells, necessitated in Section 5.2.
However, to avoid making such choices we instead define “composition with
f” as a span of hom-(n − k)-categories. This “composition span” gives all
possible ways of composing with f . We can then characterise f as universal
if its composition span gives an (n − k)-equivalence of (n − k)-categories.
For the purposes of this paper we do not attempt to justify the construction
beyond drawing some illustrative diagrams at the first few dimensions.

This concludes the main part of the thesis. Appendices A and C contain
some of the more involved calculations deferred from Sections 2.2.2 and
5.2.4 respectively.

In Appendix B we give an alternative presentation of the construction
of opetopes, using the ‘allowable graphs’ of Kelly and Mac Lane. In [KM],
Kelly and Mac Lane introduce a notion of graph to study coherence for
symmetric monoidal closed categories. These graphs give a precise way of
describing the trees used in the slice construction for symmetric multicat-
egories, and hence an alternative way of constructing opetopes. However,
since we do not use this approach in the rest of the thesis, we do not include
it in the main part of the text.

Terminology

i) Since we are concerned chiefly with weak n-categories, we follow Baez
and Dolan ([BD2]) and omit the word ‘weak’ unless emphasis is re-
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quired; we refer to strict n-categories as ‘strict n-categories’.

ii) We use the term ‘weak n-functor’ for an n-functor where functori-
ality holds up to coherent isomorphisms, and ‘lax’ functor when the
constraints are not necessarily invertible.

iii) In [BD2] Baez and Dolan use the terms ‘operad’ and ‘types’ where
we use ‘multicategory’ and ‘objects’; the latter terminology is more
consistent with Leinster’s use of ‘operad’ to describe a multicategory
whose ‘objects-object’ is 1.

iv) In [HMP1] Hermida, Makkai and Power use the term ‘multitope’ for
the objects constructed in analogy with the ‘opetopes’ of [BD2]. This
is intended to reflect the fact that opetopes are constructed using op-
erads but multitopes using multicategories, a distinction that we have
removed by using the term ‘multicategory’ in both cases. However,
we continue to use the term ‘opetope’ and furthermore, use it in gen-
eral to refer to the analogous objects constructed in each of the three
theories. Note also that Leinster uses the term ‘opetope’ to describe
objects which are analogous but not a priori the same; we refer to
these as ‘Leinster opetopes’ if clarification is needed.

v) We follow Leinster and use the term ‘(E , T )-multicategory’ for the
notion defined by Burroni ([Bur]) as ‘T -category’ (in French).

vi) We regard sets as sets or discrete categories with no notational dis-
tinction.

Related Work

The material in this thesis is, to the best of my knowledge, original. Where
the work is based on definitions in the literature, this is clearly stated.
Specifically:

Chapter 1, The theory of multicategories, takes as its starting point
the definitions of multicategory given in [BD2], [HMP1] and [Lei2] respec-
tively. The definitions are those given in these papers (with a few minor
corrections); the relationship between the theories is new material.

Chapter 2, The theory of opetopes, again takes as its starting point
the definitions given in [BD2], [HMP1] and [Lei2]; however the definition
according to [BD2] is modified to include the category of objects, and this
modification is followed through the rest of the thesis. The relationship
between the theories is new material.

Chapter 3, The category of opetopes, is new material.

Chapter 4, Opetopic sets, contains definitions given in [BD2] but
modified along the lines described earlier. The proof that the category of
opetopic sets is a presheaf category is new.

Chapter 5, Weak n-categories, also uses definitions given in [BD2]
but modified along the same lines as above. The analysis of the cases n ≤ 1
is outlined in [BD2], but the analysis of n = 2 is original.

Chapter 6, An alternative approach to universality is original.
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Appendix A is a proof deferred from Chapter 2.
Appendix B, Opetopes via Kelly-Mac Lane graphs is new material.
Appendix C contains calculations deferred from Chapter 5.
I have written up most parts of this thesis before, in papers available

electronically ([Che1], [Che2], [Che3], [Che4], [Che5]), but in many places
I have added detail and rigour.
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Chapter 1

The theory of

multicategories

Opetopes are described using the language of multicategories. In each of the
three theories of opetopes in question, a different underlying theory of mul-
ticategories is used. In this chapter we give examine the three underlying
theories, and we construct a way of relating these theories to one another;
this relationship provides subsequent equivalences between the definitions.
We adopt a concrete approach here; certain aspects of the definitions sug-
gest a more abstract approach but this will require further work beyond
the scope of this thesis.

1.1 Definitions

In this section we give the definitions of the three theories of multicategories
used in this work.

1.1.1 Symmetric multicategories

In [BD2] opetopes are constructed using symmetric multicategories. In this
section we define SymMulticat, the category of symmetric multicategories
with a category of objects. The definition we give here includes one axiom
which appears to have been omitted from [BD2].

We write F for the ‘free symmetric strict monoidal category’ monad on
Cat, and Sk for the group of permutations on k objects; we also write ι for
the identity permutation.

Definition 1.1.1. A symmetric multicategory Q is given by the following
data

1) A category o(Q) = C of objects. We refer to C as the object-category,
the morphisms of C as object-morphisms, and if C is discrete, we
say that Q is object-discrete.

2) For each p ∈ FC
op × C, a set Q(p) of arrows. Writing

p = (x1, . . . , xk;x),
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an element f ∈ Q(p) is considered as an arrow with source and target
given by

s(f) = (x1, . . . , xk)

t(f) = x

and we say f has arity k. We may also write a(Q) for the set of all
arrows of Q.

3) For each object-morphism f : x −→ y, an arrow ι(f) ∈ Q(x; y). In
particular we write 1x = ι(1x) ∈ Q(x;x).

4) Composition: for any f ∈ Q(x1, . . . , xk;x) and gi ∈ Q(xi1, . . . , ximi
;xi)

for 1 ≤ i ≤ k, a composite

f ◦ (g1, . . . , gk) ∈ Q(x11, . . . , x1m1 , . . . , xk1, . . . , xkmk
;x)

5) Symmetric action: for each permutation σ ∈ Sk, a map

σ : Q(x1, . . . , xk;x) −→ Q(xσ(1), . . . , xσ(k);x)

f 7−→ fσ

satisfying the following axioms:

1) Unit laws: for any f ∈ Q(x1, . . . , xm;x), we have

1x ◦ f = f = f ◦ (1x1 , . . . , 1xm)

2) Associativity: whenever both sides are defined,

f ◦ (g1 ◦ (h11, . . . , h1m1), . . . , gk ◦ (hk1, . . . , hkmk
)) =

(f ◦ (g1, . . . , gk)) ◦ (h11, . . . , h1m1 , . . . , hk1, . . . , hkmk
)

3) For any f ∈ Q(x1, . . . , xm;x) and σ, σ′ ∈ Sk,

(fσ)σ′ = f(σσ′)

4) For any f ∈ Q(x1, . . . , xk;x), gi ∈ Q(xi1, . . . , ximi
;xi) for 1 ≤ i ≤ k,

and σ ∈ Sk, we have

(fσ) ◦ (gσ(1), . . . , gσ(k)) = f ◦ (g1, . . . , gk) · ρ(σ)

where ρ : Sk −→ Sm1+...+mk
is the obvious homomorphism.

5) For any f ∈ Q(x1, . . . , xk;x), gi ∈ Q(xi1, . . . , ximi
;xi), and σi ∈ Smi

for 1 ≤ i ≤ k, we have

f ◦ (g1σ1, . . . , gkσk) = (f ◦ (g1, . . . , gk))σ

where σ ∈ Sm1+···+mk
is the permutation obtained by juxtaposing the

σi.
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6) ι(f ◦ g) = ι(f) ◦ ι(g)

We may draw an arrow f ∈ Q(x1, . . . , xk;x) as

· · ·
x1 x2 xk

f

x

and a composite f ◦ (g1, . . . , gk) as

. . .

f

x11 · · ·x1m1

g1

x21 · · ·x2m2

g2

xk1 · · ·xkmk

gk

.

A symmetric multicategory Q may be thought of as a functor

Q : FC
op × C −→ Set

with some extra structure.
In a more abstract view, we would expect F to be a 2-monad on the

2-category Cat, which lifts via a generalised form of distributivity to a
bimonad on Prof, the bicategory of profunctors. Then the Kleisli bicate-
gory for this bimonad should have as objects small categories, and its 1-cells
should be essentially profunctors of the form FC |−→ D in the opposite cat-
egory. However, the calculations involved in this description are intricate
and require further work.

In this abstract view, a symmetric multicategory Q would then be a
monad in this bicategory. Arrows and symmetric action (Data 2, 5) are
given by the action of Q, identities (Data 3) by the unit of the monad and
composition (Data 4) by the multiplication for the monad.

Definition 1.1.2. Let Q and R be symmetric multicategories with object-
categories C and D respectively. A morphism of symmetric multicategories
F : Q −→ R is given by
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• A functor F = F0 : C −→ D

• For each arrow f ∈ Q(x1, . . . , xk;x) an arrow Ff ∈ R(Fx1, . . . , Fxk;Fx)

satisfying

• F preserves identities: F (ι(f)) = ι(Ff) so in particular F (1x) = 1Fx

• F preserves composition: whenever it is defined

F (f ◦ (g1, . . . , gk)) = (Ff ◦ (Fg1, . . . , Fgk))

• F preserves symmetric action: for each f ∈ Q(x1, . . . , xk;x) and
σ ∈ Sk

F (fσ) = (Ff)σ

Composition of such morphisms is defined in the obvious way, and there is
an obvious identity morphism 1Q : Q −→ Q. Thus symmetric multicate-
gories and their morphisms form a category SymMulticat.

Definition 1.1.3. A morphism F : Q −→ R is an equivalence if and only
if the functor F0 : C −→ D is an equivalence, and F is full and faithful.
That is, given objects x1, . . . , xm, x the induced function

F : Q(x1, . . . , xm;x) −→ R(Fx1, . . . , Fxm;Fx)

is an isomorphism.

Note that, given morphisms of symmetric multicategories

Q
F
−→ R

G
−→ P

we have a result of the form ‘any 2 gives 3’, that is, if any two of F,G and
GF are equivalences, then all three are equivalences.

Furthermore, we expect that SymMulticat may be given the structure
of a 2-category, and that the equivalences in this 2-category would be the
equivalences as above. However, we do not pursue this matter here.

1.1.2 Generalised multicategories

In [HMP1] multitopes are constructed using ‘generalised multicategories’;
in fact we need only a special case of the generalised multicategory defined
in [HMP1], that is, the ‘1-level’ case.

Definition 1.1.4. A generalised multicategory M is given by

• A set o(M) of objects

• A set a(M) of arrows, with source and target functions

s : a(M) −→ o(C)⋆

t : a(M) −→ o(C)

where A⋆ denotes the set of lists of elements of a set A. If

s(f) = (x1, . . . , xk)

we write s(f)p = xp and |s(f)| = {1, . . . , k}.
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• Composition: for any f, g ∈ a(M) with t(g) = s(f)p, a composite
f ◦p g ∈ a(M) with

t(f ◦p g) = t(f)

|s(f ◦p g)| ∼= (|s(f)| \ {p}) ∐ |s(g)|

and amalgamating maps

ψ[f, g, p] : |s(f)| \ {p} −→ |s(f ◦p g)|
φ[f, g, p] : |s(g)| −→ |s(f ◦p g)|.

such that ψ ∐ φ gives a bijection as above. Equivalently, writing

s(f) = (x1, . . . xk),

s(g) = (y1, . . . , yj)

and

(z1, . . . , zk+j−1) = (x1, . . . , xp−1, y1, . . . yj, xp+1, . . . , xk+j−1)

we have a permutation χ = χ[f, g, p] ∈ Sk+j−1 such that

s(f ◦p g) = (zχ(1), . . . , zχ(k+j−1)).

• Identities: for each x ∈ o(M) an arrow 1x : x −→ x ∈ a(M)

satisfying the following laws

• Unit laws: for any f ∈ a(M) with s(f)p = x and t(f) = y, we have

1y ◦1 f = f = f ◦p 1x

χ[1y, f, 1] = ι = χ[f, 1x, p].

• Associativity: for any f, g, h ∈ a(M) with s(f)p = t(g) and s(g)q =
t(h) we have

(f ◦p g) ◦q̄ h = f ◦p (g ◦q h)

where q̄ = φ[f, g, p](q). Furthermore, the composite amalgamation
maps must also be equal; that is, the following coherence conditions
must be satisfied:

ψ[f ◦p g, h, q̄] ◦ ψ[f, g, p] = ψ[f, h ◦q g, p]
ψ[f ◦p g, h, q̄] ◦ φ̄[f, g, p] = φ[f, h ◦q g, p] ◦ ψ[g, h, q]

φ[f ◦p g, h, q̄] = φ[f, h ◦q g, p] ◦ φ[g, h, q]

where φ̄ indicates restriction to the appropriate domain. Note that
the conditions concern the source elements of f , g and h respectively.

• Commutativity: for any f, g, h ∈ a(M) with s(f)p = t(g), s(f)q =
t(h), p 6= q we have

(f ◦p g) ◦q̄ h = (f ◦q h) ◦p̄ g
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where q̄ = ψ[f, g, p] and p̄ = ψ[f, h, q]. As above, the composite amal-
gamation maps must also be equal; that is, the following coherence
conditions must be satisfied:

ψ[f ◦p g, h, q̄] ◦ ψ̄[f, g, p] = ψ[f ◦q h, g, p̄] ◦ ψ̄[f, h, q]
ψ[f ◦p g, h, q̄] ◦ φ[f, g, p] = φ[f ◦q h, g, p̄]
φ[f ◦p g, h, q̄] = ψ[f ◦q h, g, p̄] ◦ φ[f, h, q].

The conditions concern the source elements of f , g and h respectively.

Note that the coherence conditions are necessary in case of repeated
source elements.

Definition 1.1.5. A morphism of generalised multicategories

F = (F, θ) : M −→ N

is given by:

• for each object x ∈ o(M) an object Fx ∈ o(N)

• for each arrow

f : (x1, . . . , xk) −→ x ∈ a(M)

a transition map θf = θF
f ∈ Sk and an arrow

Ff : (Fxθ−1(1), . . . , Fxθ−1(k)) −→ Fx ∈ a(N)

satisfying

• F preserves identities: F (1x) = 1Fx

• F preserves composition: if f, g ∈ a(M) and t(g) = s(f)p then

Ff ◦θf (p) Fg = F (f ◦p g).

Furthermore, the following coherence conditions must be satisfied:

θf◦pg ◦ φ[f, g, p] = φ[Ff, Fg, θf (p)] ◦ θg

θf◦pg ◦ ψ[f, g, p] = ψ[Ff, Fg, θf (p)] ◦ θ̄f

on the source elements of g and f respectively, where θ̄ indicates the
restriction of θ as appropriate.

Given morphisms of generalised multicategories M
F
−→ N

G
−→ L we

have a composite morphism H = G ◦ F : M −→ L where H is the usual
composite on objects and arrows, and we put θH

f = θG
Ff ◦ θ

F
f . There is an

identity morphism 1M : M −→ M which is the usual identity on objects
and arrows, with θf = ι for all f ∈ a(M).

Thus generalised multicategories and their morphisms form a category
GenMulticat.
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1.1.3 (E , T )-multicategories

In [Lei2] opetopes are constructed using (E , T )-multicategories. These are
defined by Burroni in [Bur] as ‘T -categories’.

Definition 1.1.6. Let T be a cartesian monad on a cartesian category E.
An (E , T )-multicategory is given by an ‘objects-object’ C0 and an ‘arrows-
object’ C1, with a diagram

TC0
d
←− C1

c
−→ C0

in E together with maps C0
ids
−→ C1 and C1◦C1

comp
−→ C1 satisfying associative

and identity laws. (See [Lei5] for full details.)

We write CartMonad for the category of cartesian monads and carte-
sian monad opfunctors. A cartesian monad opfunctor

(U, φ) : (E1, T1) −→ (E2, T2)

consists of

• a functor U : E1 −→ E2 preserving pullbacks

• a cartesian natural transformation φ : UT1 −→ T2U , that is, a natural
transformation whose naturality squares are pullbacks

satisfying certain axioms (see [Str1] and [Lei3] for full definitions).

1.2 Comparisons

We now compare the three theories of multicategories.

1.2.1 Relationship between symmetric and generalised mul-

ticategories

We compare symmetric and generalised multicategories by means of a func-
tor

ξ : GenMulticat −→ SymMulticat.

We begin by constructing this functor, and then show that it is full and
faithful.

We construct the functor ξ as follows. Given a generalised multicategory
M , we define an object-discrete symmetric multicategory ξ(M) = Q by

• Objects: o(Q) = C is the discrete category with objects o(M).

• Arrows: for each

p = (x1, . . . , xk;x) ∈ F(C)op × C

an element of Q(p) is given by (f, σ) where σ ∈ Sk and

f : (xσ(1), . . . , xσ(k)) −→ x ∈ a(M).
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• Composition: by commutativity, it is sufficient to define

α ◦p β = α ◦ (1x1 , . . . , 1xp−1 , β, 1xp+1 , . . . , 1xk
)

where

α = (f, σ) ∈ Q(x1, . . . , xk;x)

and β = (g, τ) ∈ Q(y1, . . . , yj;xp).

Now given such α and β, we have in M arrows

f : (xσ(1), . . . , xσ(k)) −→ x

and g : (yτ(1), . . . , yτ(j)) −→ xp

giving a composite in M

f ◦p̄ g : (zχ(1), . . . , zχ(k+j−1)) −→ x

where p̄ = σ−1(p), χ = χ(f, g, p̄) and

(z1, . . . , zk+j−1) = (xσ(1), . . . , xσ(p̄−1), yτ(1), . . . , yτ(j), xσ(p̄+1), . . . , xσ(k)).

We seek a composite in Q with source

(a1, . . . , ak+j−1) = (x1, . . . , xp−1, y1, . . . , yj, xp+1, . . . , xk)

so the composite should be of the form (f ◦p̄ g, γ), where f ◦p̄ g has
source

(aγ(1), . . . , aγ(k+j−1))

in M . So we define a permutation γ ∈ Sj+k−1 by aγ(i) = zχ(i) and we
define the composite to be

(f, σ) ◦p (g, τ) = (f ◦p̄ g, γ).

Note that γ is determined by σ, τ and χ.

• For each x ∈ C = o(M), 1x ∈ Q(x;x) is given by (1x, ι).

• For each permutation σ ∈ Sk, we have a map

σ : Q(x1, . . . , xk;x) −→ Q(xσ(1), . . . , xσ(k);x)

(f, τ) 7−→ (f, σ−1τ)
.

Note that f has source (xτ(1) . . . , xτ(k)) in M , and (f, σ−1τ) on the
right hand side exhibits the ith source of f to be xσ(σ−1τ)(i) = xτ(i)

as required.

We check that this definition satisfies the conditions for a symmetric
multicategory:

1) Unit laws follow from unit laws of GenMulticat
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2) Associativity follows from associativity in GenMulticat and the co-
herence conditions for amalgamating maps

3) ((f, τ)σ)σ′ = (f, σ−1τ)σ′ = (f, σ′−1σ−1τ) = (f, τ)(σσ′)

4) Given

(f, τ) ∈ Q(x1, . . . , xk;x),

(g, µ) ∈ Q(y1, . . . , yj, xp)

and σ ∈ Sk we check that

(f, τ)σ ◦p̄ (g, µ) = ((f, τ) ◦p (g, µ)) · ρ(σ)

where p̄ = σ−1(p) and ρ is the homomorphism indicated in Sec-
tion 1.1.1. The required result then follows by simultaneous com-
position. Note that it is sufficient to check that both expressions
in question have the same first component and source (in Q), so we
write γ, γ′ for the permutations in the second component, without
specifying what they are. Now

(f, τ)σ ◦p̄ (g, µ) = (f, σ−1τ) ◦p̄ (g, µ) = (f ◦τ−1(p) g, γ)

with source

(xσ(1), . . . , xσ(p̄−1), y1, . . . , yj, xσ(p̄+1), . . . , xσ(k))

and
((f, τ) ◦p (g, µ)) · ρ(σ) = (f ◦τ−1(p) g, γ

′)

with source
(zρσ(1), . . . , zρσ(k+j−1))

where

(z1, . . . , zk+j−1) = (x1, . . . , xp−1, y1, . . . , yj, xp+1, . . . , xk).

The action of ρ(σ) is that of σ on the xi but with (y1, . . . , yj) substi-
tuted for xp. So

(zρσ(1), . . . , zρσ(k+j−1)) =

(xσ(1), . . . , xσ(p̄−1), y1, . . . , yj, xσ(p̄+1), . . . , xσ(k))

as required.

5) Given (f, τ) and (g, µ) as above, and σ ∈ Sj we check that

(f, τ) ◦p (g, µ)σ = ((f, τ) ◦p (g, µ))σ′

where σ′ ∈ Sk+j−1 is given by inserting σ at the pth place.

Now, on the left hand side we have

(f, τ) ◦p (g, µ)σ = (f, τ) ◦p (g, σ−1µ)
= (f ◦τ−1(p) g, γ),

say, with source

(x1, . . . , xp−1, yσ(1), . . . yσ(j), xp+1, . . . , xk).

This agrees with the right hand side.
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6) Since all object-morphisms are identities, this axiom is trivially sat-
isfied.

So ξ(M) is a symmetric multicategory.
Next we define ξ on morphisms of generalised multicategories. Given a

morphism F : M −→ N in GenMulticat we define a morphism

ξF : ξM −→ ξN

in SymMulticat as follows.

• On objects: given x ∈ o(ξM) = o(M), put

(ξF )(x) = Fx ∈ o(N) = o(ξN)

• On arrows: given (f, σ) ∈ ξM(x1, . . . , xk;x), put

ξF (f, σ) = (Ff, σθf
−1)

and check that

(Ff, σθf
−1) ∈ ξN(Fx1, . . . , Fxk;Fx).

First note that

t(Ff, σθf
−1) = t(Ff) = F (t(f)) = Fx.

Now
s(f) = (xσ(1), . . . , xσ(k))

in M , so by the action of (F, θ) we have

s(Ff) = (Fxσθf
−1(1), . . . , Fxσθf

−1(k))

in N , and so

(Ff, σθf
−1) ∈ ξN(Fx1, . . . , Fxk;Fx)

as required.

We check that this definition satisfies the laws for a morphism of sym-
metric multicategories:

• ξF preserves identities: since θ1x ∈ S1 = {ι}, we have

ξF (1x, ι) = (F (1x), ι) = (1Fx, ι).

• ξF preserves composition: we check that ξF (α ◦p β) = ξFα ◦p ξFβ,
and the result then follows by simultaneous composition. Put

α = (f, σ) ∈ Q(x1, . . . , xk;x)

and β = (g, τ) ∈ Q(y1, . . . , yj; y).
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Then

ξF (α ◦p β) = ξF (f ◦σ−1(p) g , γ)

= ( F (f ◦σ−1(p) g) , γθf
−1 )

= ( Ff ◦θf σ−1(p) Fg , γθf
−1 )

and this has source

s(Fα ◦p Fβ) = (Fx1, . . . , Fxp−1, Fy1, . . . , Fyj , Fxp+1, . . . , Fxk).

For the right hand side, we have

ξFα = (Ff, σθ−1
f )

ξFβ = (Fg, τθ−1
g )

and so the first component of ξFα ◦p ξFβ is also Ff ◦θf σ−1(p) Fg. So
since ξF (α ◦p β) and ξFα ◦p ξFβ agree in the first component and
source, we have the result required.

• ξF preserves symmetric action:

ξF ( (f, τ)σ ) = ξF (f, σ−1τ)

= (Ff , σ−1τθf
−1)

= (Ff , τθf
−1)σ

= (ξF (f, τ))σ

So ξF is a morphism of symmetric multicategories.
We check that ξ is functorial. Clearly ξ1M = 1ξM . Now consider

morphisms of generalised multicategories

M
F
−→ N

G
−→ L

so we need to show

ξ(G ◦ F ) = ξG ◦ ξF.

• On objects

ξ(G ◦ F )(x) = (G ◦ F )(x)

= (ξG ◦ ξF )(x)

• On arrows

ξ(G ◦ F )(f, σ) = ( (G ◦ F )(f) , σ(θGF
f )−1 )

= ( GFf , σ(θG
Ff ◦ θ

F
f )−1 )

= ( GFf , σ(θF
f )−1(θG

Ff)−1 )

= ξG( Ff , σ(θF
f )−1 )

= (ξG ◦ ξF )(f, τ)σ
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So ξ is a functor as required.

Proposition 1.2.1. The functor ξ : GenMulticat −→ SymMulticat is
full and faithful.

Proof. Given any morphism

G : ξM −→ ξN

of symmetric multicategories, we show that there is a unique morphism

H = (H, θ) : M −→ N

of generalised multicategories such that

ξH = G.

Suppose first that such an H exists.

• On objects: for each object x ∈ o(M) = o(ξM) we must have

Hx = (ξH)x = Gx.

• On arrows: given an arrow f ∈M(x1, . . . , xk;x), we certainly have

(f, ι) ∈ ξM(x1, . . . , xk;x)
and G(f, ι) = (f̄ , σ) ∈ ξN(Gx1, . . . Gxk;Gx),

say, where f̄ is a morphism in N with source

s(f̄) = (Gxσ(1), . . . , Gxσ(k)).

Now (ξH)(f, ι) = (Hf, θ−1
f ) but we must have

(ξH)(f, ι) = G(f, ι)
= (f̄ , σ)

so we must have Hf = f̄ and θf = σ−1.

So we define H as above and check that this satisfies the axioms for a
morphism of generalised multicategories.

• H preserves identities

We have

G(1x, ι) = (1Gx, ι)

so

H(1x) = 1Gx = 1Hx.

• H preserves composition
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We need to show

Hf ◦θf (p) Hg = H(f ◦p g)

and that the coherence conditions are satisfied. Now, G preserves the
composition of ξM so

Gα ◦p Gβ = G(α ◦p β).

Now we have
Gα ◦p Gβ = (f̄ , θ−1

f ) ◦p (ḡ, θ−1
g )

= (f̄ ◦θf (p) ḡ, γ), say

and
G(α ◦p β) = G(f ◦p g, γ

′)

= (f ◦p g, γ
′′), say.

So these must be equal on both components. Comparing first components,
we have

f ◦p g = f̄ ◦θf (p) ḡ

but by definition we have

f ◦p g = H(f ◦p g)
and f̄ ◦θf (p) ḡ = Hf ◦θf (p) Hg

so

Hf ◦θf (p) Hg = H(f ◦p g)

as required. Furthermore, equality of the second components gives pre-
cisely the coherence condition we require, since γ is formed from θf , θg and
the amalgamation map χ(f̄ , ḡ, θf (p)), and γ′′ is formed from χ(f, g, p) and
θf◦pg.

So H is a morphism of generalised multicategories; by construction it
is unique such that ξH = G, so ξ is indeed full and faithful. �

We now give necessary and sufficient conditions for a symmetric multi-
category to be in the image of ξ.

Definition 1.2.2. We say that a symmetric multicategory Q is freely sym-
metric if and only if for every arrow α ∈ Q and permutation σ

ασ = α⇒ σ = ι.

Proposition 1.2.3. Let Q be a symmetric multicategory. Then Q ∼= ξ(M)
for some generalised multicategory M if and only if Q is object-discrete and
freely symmetric.

Proof. Suppose Q ∼= ξ(M). Then by the definition of ξ, Q is object-
discrete, with object-category C ∼= o(M). To show that Q is freely sym-
metric, write p = (x1, . . . , xk;x), so

Q(p) = {(f, τ) | f ∈ a(M), τ ∈ Sk

f : xτ(1), . . . , xτ(k) −→ x ∈M}
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and consider α = (f, τ) ∈ Q(p). Now (f, τ)σ = (f, σ−1τ) so

ασ = α ⇒ σ−1τ = τ

⇒ σ = ι

as required.

Conversely, suppose that Q is object-discrete and freely symmetric. So,
given an arrow α of arity k, we have distinct arrows ασ for each σ ∈ Sk.
We define an equivalence relation ∼ on a(Q), by

α ∼ β ⇐⇒ β = ασ for some permutation σ

and we specify a representative of each equivalence class.

Now let M be a generalised multicategory whose objects are those of Q,
and whose arrows are the chosen representatives of the equivalence classes
of ∼. Composition is inherited, with amalgamation maps re-ordering the
sources as necessary. So associativity and commutativity are inherited; the
coherence conditions for amalgamation maps are satisfied since Q is freely
symmetric. Observe that for each x ∈ C, the equivalence class of 1x is {1x},
so M inherits identities.

So M is a generalised multicategory, and ξ(M) ∼= Q. Note that a dif-
ferent choice of representatives would give an equivalent generalised multi-
category. �

Definition 1.2.4. We call a symmetric multicategory tidy if it is freely
symmetric with a category of objects equivalent to a discrete one. We write
TidySymMulticat for the full subcategory of SymMulticat whose ob-
jects are tidy symmetric multicategories.

Lemma 1.2.5. A symmetric multicategory is tidy if and only if it is equiv-
alent to one in the image of ξ.

Proof. We show that Q is tidy if and only if Q ≃ R where R is freely sym-
metric and object-discrete. The result then follows by Proposition 1.2.3.

Suppose Q is tidy. We construct R as follows. Let C be the category of
objects of Q, with C equivalent to a discrete category S, say, by

C

F
−→
←−
G

S.

Then R is given by

• o(R) = S.

• R(d1, . . . , dn; d) = Q(Gd1, . . . , Gdn;Gd).

• identities, composition and symmetric action induced from Q.
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Then certainly Q ≃ R and R is freely symmetric and object-discrete; the
converse is clear. �

We will later see (Section 2.3) that only tidy symmetric multicategories
are needed for the construction of opetopes. We now include another result
that will be useful in the next section.

Lemma 1.2.6. If Q is a tidy symmetric multicategory then eltQ is equiv-
alent to a discrete category.

Proof. This may be proved by direct calculation; it is also seen in
Proposition 2.2.2. �

Note that we write eltQ for the category of elements of Q, where Q
is here considered as a functor Q : FC

op × C −→ Set with certain extra
structure.

So eltQ has as objects pairs (p, g) with p ∈ FC
op × C and g ∈ Q(p); a

morphism α : (p, g) −→ (p′, g′) is an arrow α : p −→ p′ ∈ FC
op × C such

that
Q(α) : Q(p) −→ Q(p′)

g 7−→ g′ .

For example, an arrow

(σ, f1, f2, f3, f4; f) : (x1, x2, x3, x4;x) −→ (y1, y2, y3, y4; y) ∈ FC
op × C

may be represented by the following diagram

?

x

y

f

j?= �

yσ(4) yσ(2) yσ(1) yσ(3)

x1 x2 x3 x4

f1 f2 f3 f4

.

Then, given any arrow g ∈ Q(x1, . . . xm;x), we have an arrow

α(g) = g′ ∈ Q(y1, . . . , ym; y)

given by
g′ = (ι(f) ◦ g ◦ (ι(f1), . . . , ι(fm))σ).

So continuing the above example we may have:
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?

x

y

f

g

j?= �

yσ(4)yσ(2)yσ(1)yσ(3)

x1 x2 x3 x4

f1 f2f3 f4y1 y2 y3 y4

g′

y

=

.

Note that we may write an object (p, g) ∈ elt(Q) simply as g, since p is
uniquely determined by g.

1.2.2 Relationship between symmetric multicategories and

cartesian monads

The respective roles of multicategories in the Baez-Dolan and Leinster ap-
proaches are not explicitly analogous. In this section we exhibit instead
a correspondence between certain symmetric multicategories and certain
cartesian monads, by constructing a functor

ζ : TidySymMulticat −→ CartMonad.

This is enough since we will see that all the symmetric multicategories
involved in the construction of opetopes are tidy.

We begin by defining the action of ζ on objects; so for any tidy symmet-
ric multicategory Q, we construct a cartesian monad ζ(Q) = (EQ, TQ), say.
Informally, the idea behind this construction is that TQ should encapsulate
information about the arrows of Q. The functor part is constructed to give
the arrows themselves, the unit to give the identities, and multiplication
the reduction laws (composites).

Write o(Q) = C. Q is tidy, so C ≃ S, say, where S is a discrete
category. For various of the constructions which follow, we assume that
we have chosen a specific functor S

∼
−→ C. However, when isomorphism

classes are taken subsequently, we observe that the construction in question
does not depend on the choice of this functor.

Put EQ = Set/S and observe immediately that this is cartesian. (This
is sufficient here, though of course Set/S has much more structure than
this.)

Informally, an element (X, f) = (X
f
−→ S) of Set/S may be thought of

as a system for labelling Q-objects with ‘compatible’ elements of X; each
‘label’ is compatible with an isomorphism class of Q-objects. Then the
action of TQ assigns compatible labels to the source elements of Q-arrows
in every way possible; the target is not affected. The resulting set of ‘source-
labelled Q-arrows’ is itself made into a set of labels by regarding each arrow
as a ‘label’ for its target.
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We now give the formal definition of the functor TQ : EQ −→ EQ. For

the action on object-categories, consider (X, f) = (X
f
−→ S) ∈ Set/S. We

have the following composite functor

eltQ
s
−→ FC

op ∼
−→ FS op

where F denotes the free symmetric strict monoidal category monad on
Cat, and s and t the source and target functions respectively. Consider
the pullback

eltQ

· FX op

FS op .

-

-
? ?

Ff op

Since Q is tidy, eltQ is equivalent to a discrete category, and so too is the
above pullback; so we have

eltQ×FS op FX op ≃ X ′,

say, whereX ′ is discrete. Put TQ(X, f) = (X ′, f ′) where f ′ is the composite

X ′
∼
−→ eltQ×FS op FX op −→ eltQ

t
−→ C

∼
−→ S.

This is well-defined since if (α, x) ∼= (α′, x′) ∈ eltQ ×FS op FX op then
certainly α ∼= α′ ∈ eltQ and so t(α) ∼= t(α′) ∈ C.

We now define the action of TQ on morphisms. A morphism

S

X Y-

R 	

gf

h

in Set/S induces a functor

eltQ×FS op FX op −→ eltQ×FS op FY op

which, by construction, makes the following diagram commute:

eltQ

eltQ×FS op FX op eltQ×FS op FY op-

R 	

giving a morphism
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S

X ′ Y ′-

R 	
g′f ′

h′

in Set/S. We define TQ on morphisms by TQ(h) = h′. TQ is clearly
functorial; we now show that it inherits a cartesian monad structure from
the identities and composition of Q. For convenience we write EQ = E and
TQ = T .

• unit

We seek a natural transformation η : 1E =⇒ T , so with the above
notation we need components

η(X,f) : (X, f) −→ (X ′, f ′).

Given (X, f) ∈ Set/S, we have a functor X −→ eltQ given by the
composite

X
f
−→ S

∼
−→ C

1
−→ eltQ.

We also have a functor X −→ FX op given by the unit of the monad F .
These induce a functor

X −→ eltQ×FSop FXop

and we define the component η(X,f) to be the composite

X −→ eltQ×FSop FXop ∼
−→ X ′.

Explicitly, η(X,f) acts as follows. We have η(X,f)(x) = [(1c, x)], the isomor-
phism class of

(1c, x) ∈ eltQ×FSop FXop.

So (1c, x) is an “identity labelled by x”, where c ∈ C is any object in the
isomorphism class fx. We can see explicitly that this is well defined since
if c ∼= c′ we have 1c

∼= 1c′ ∈ eltQ and thus

[(1c, x)] = [(1c′ , x)].

The following diagram commutes

S

X X ′-

R 	
f ′f

η(X,f)

so η(X,f) is indeed a morphism (X, f) −→ T (X, f) ∈ Set/S.
Next we show that the components η(X,f) satisfy naturality; so we show

that for any morphism h : (X, f) −→ (Y, g) ∈ Set/S the following diagram
commutes
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Y

X X ′

Y ′

-

-
? ?

h h′

η(X,f)

η(Y,g)

This follows from the construction of η, and naturality of the unit for F ;
alternatively, we see that on elements, the right-ish leg gives

x 7−→ [(1c, x)] 7−→ [(1c, hx)]

with c in the isomorphism class fx, and the left-ish leg gives

x 7−→ hx 7−→ [(1c′ , hx)]

with c′ in the isomorphism class ghx. But gh = f since h : (X, f) −→ (Y, g),
so c′ ∼= c and [(1c′ , hx)] = [(1c, hx)].

It also follows from the construction of η that the square is a pullback;
it is similarly easily seen by considering elements.

• multiplication

We seek a natural transformation µ : T 2 =⇒ T . Consider (X, f) ∈
Set/S. Then by definition

X ′ ≃ eltQ×FSop FXop = A, say
and X ′′ ≃ eltQ×FSop FX ′op = B, say.

We construct a commutative square

eltQ

B FX op

FS op

-

-
? ?

and use the universal property of the pullback A to induce a morphism
B −→ A, and hence X ′′ −→ X ′.

The morphism B −→ FX op along the top is given by

eltQ×FX ′
op p2
−→ FX ′

op Fp2
−→ FFX op µ

−→ FX op

where p1 and p2 denote the first and second projections respectively. The
morphism B −→ eltQ on the left is given by

eltQ×FX ′
op (1,Fp1)
−→ eltQ×F(eltQ)op −→ eltQ

where the second morphism is composition in Q. Then, by definition of X ′

and naturality of µ, the above square commutes, inducing a map

B −→ A

and hence, on isomorphism classes, a map
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S

X ′′ X ′-

R 	

µ(X,f)

in Set/S as required.

Informally, (X, f) is a system for labelling Q-objects, and T (X, f) =
(X ′, f ′) gives source-labelled Q-arrows. A typical element of X ′ may be
thought of as the isomorphism class of

x1 x2 · · · xm

α

where α ∈ eltQ and s(α) ∼= (fx1, . . . , fxn). Then f ′ takes this element to
[t(α)]. So a typical element θ of T 2(X, f) = (X ′′, f ′′) is the isomorphism
class of

β1 β2 · · · βm

α

where βi ∈ X
′ and s(α) ∼= (f ′(β1), . . . , f

′(βm)). Writing βi as the isomor-
phism class of

xi1 · · ·xini

αi

we can draw θ as (the isomorphism class of)
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. . .

α

x11 · · · x1n1

α1

x21 · · · x2n2

α2

xm1· · ·xmnm

αm

where α,α1, . . . , αm ∈ eltQ and s(α) ∼= (t(α1), . . . t(αm)). So, via the
relevant object-isomorphisms, we may compose the underlying Q-arrows
to give α′, say, which is defined up to isomorphism. We then concatenate
the X-labels (via the multiplication for F) to give

x11 · · · xmnm

α′

.

Finally, we take the isomorphism class of this to give µ(X,f)(θ) ∈ X
′, and

f ′′(µ(X,f)(θ)) = [t(α′)] = [t(α)] ∈ S.

It follows that µ defined in this way is a cartesian natural transforma-
tion.

• T preserves pullbacks

First observe that a commutative square in Set/S is a pullback if and
only if applying the forgetful functor Set/S −→ Set gives a pullback in
Set. Then T preserves pullbacks since F preserves pullbacks.

So TQ = (T, η, µ) is a cartesian monad on EQ = E and we may define
ζ(Q) = (EQ, TQ).

We now define the action of ζ on morphisms. Let

F : Q −→ R
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be a morphism of tidy symmetric multicategories. We construct a cartesian
monad opfunctor

(UF , φF ) : (EQ, TQ) −→ (ER, TR)

that is

• a functor U = UF : Set/SQ −→ Set/SR preserving pullbacks

• a cartesian natural transformation φ = φF : UTQ −→ TRU

satisfying certain axioms.

We define U as follows. On objects, we have a functor

F : o(Q) −→ o(R)

giving a morphism on isomorphism classes

F̄ : SQ −→ SR.

This induces a functor

Set/SQ −→ Set/SR

by composition with F̄ , which clearly preserves pullbacks; we define U to
be this functor.

We now construct the components of φ. Given (X, f) ∈ Set/SQ write

TQ(X, f) = (XQ, fQ)
and XQ ≃ eltQ×FSQ

op FXop.

We seek

φ(X,f) : (XQ, F̄ ◦ fQ) −→ (XR, (F̄ ◦ f)R) ∈ Set/SR

that is, a morphism XQ −→ XR such that the outside of the following
diagram commutes
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SQ

o(Q) o(R)

SR

eltQ eltR

eltQ×FSQ
op FXop eltR×FSR

op FXop

XQ XR

-

-

-

-

-

? ?

? ?

? ?

? ?

∼ ∼

t t

∼ ∼

F̄

F

F

(F, 1)

.

The map XQ −→ XR is induced by (F, 1) on isomorphism classes as shown
in the diagram, since the pullback

eltR×FSR
op FXop

is along the morphism F̄ ◦f . We define φ(X,f) to be this map. Observe that
all squares in the diagram commute, so φ(X,f) is a morphism in Set/SR as
required.

We now check that these components satisfy naturality. Given any
morphism h : (X, f) −→ (Y, g) ∈ Set/SQ, we have the following diagram

eltQ×FSQ
op FY op

eltQ×FSQ
op FXop eltR×FSR

op FXop

eltR×FSR
op FY op

-

-
? ?

(1,Fh) (1,Fh)

(F, 1)

(F, 1)

Considering this componentwise, it clearly commutes and is a pullback.
The result on isomorphism classes follows.
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Finally, by functoriality of F , (U, φ) satisfies the axioms for a monad
opfunctor. So (U, φ) is a cartesian monad opfunctor and the construction
is clearly functorial. This completes the definition of ζ.

We observe immediately that the construction of (EQ, TQ) uses only the
isomorphism classes of objects and arrows of Q. So

(EQ1 , TQ1)
∼= (EQ2 , TQ2) ⇐⇒ Q1 ≃ Q2.

Recall (1.1.1) that we expect that a symmetric multicategory Q may be
given as a monad in a certain bicategory, in which case the identities are
given by the unit, and composition laws by multiplication. In this abstract
framework there should be a morphism from the underlying bicategory to
the 2-category Cat, taking the monad Q to the monad TQ, but this is
somewhat beyond the scope of this thesis.



Chapter 2

The theory of opetopes

In this chapter we give the analogous constructions of opetopes in each
theory, and show in what sense they are equivalent. That is, we show that
the respective categories of k-opetopes are equivalent.

2.1 Slicing

We first discuss the process by which (k + 1)-cells are constructed from
k-cells. In [BD2], the ‘slice’ construction is used, giving for any symmetric
multicategory Q the slice multicategory Q+. In [HMP1] the ‘multicategory
of function replacement’ is used but this has a more far-reaching role than
that of the Baez-Dolan slice. For comparison with the Baez-Dolan theory,
we construct a ‘slice’ which is analogous to the Baez-Dolan slice and is a
special case of a multicategory of function replacement.

In [Lei2] the ‘free (E , T )-operad’ construction is used, giving, for any
‘suitable’ monad (E , T ), the free (E , T )-operad monad (E ′, T ′).

2.1.1 Slicing a symmetric multicategory

Let Q be a symmetric multicategory with a category C of objects, so Q
may be considered as a functor Q : FC

op × C −→ Set with certain extra
structure. The slice multicategory Q+ is given by:

• Objects: put o(Q+) = elt(Q)

So the category o(Q+) has as objects pairs (p, g) with p ∈ FC
op × C

and g ∈ Q(p); a morphism α : (p, g) −→ (p′, g′) is an arrow α : p −→ p′ ∈
FC

op × C such that

Q(α) : Q(p) −→ Q(p′)
g 7−→ g′

Then, given any arrow

g ∈ Q(x1, . . . xm;x)

we have an arrow α(g) = g′ ∈ Q(y1, . . . , ym; y) given by

g′ = (ι(f) ◦ g ◦ (ι(f1), . . . , ι(fm))σ)
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(see Section 1.2.1).

• Arrows: Q+(f1, . . . , fn; f) is given by the set of ‘configurations’ for
composing f1, . . . , fn as arrows of Q, to yield f .

Writing fi ∈ Q(xi1, . . . ximi
;xi) for 1 ≤ i ≤ n, such a configuration is

given by (T, ρ, τ) where

1) T is a planar tree with n nodes. Each node is labelled by one of the fi,
and each edge is labelled by an object-morphism of Q in such a way
that the (unique) node labelled by fi has precisely mi edges going in
from above, labelled by ai1, . . . , aimi

∈ arr(C), and the edge coming
out is labelled ai ∈ a(C), where cod(aij) = xij and dom(ai) = xi.

2) ρ ∈ Sk where k is the number of leaves of T .

3) τ : {nodes of T} −→ [n] = {1, . . . , n} is a bijection such that the node
N is labelled by fτ(N). (This specification is necessary to allow for
the possibility fi = fj, i 6= j.)

Note that (T, ρ) may be considered as a ‘combed tree’, that is, a planar
tree with a ‘twisting’ of branches at the top given by ρ.

The arrow resulting from this composition is given by composing the
fi according to their positions in T , with the aij acting as arrows ι(aij)
of Q, and then applying ρ according to the symmetric action on Q. This
construction uniquely determines an arrow (T, ρ, τ) ∈ Q+(f1, . . . , fn; f).

• Composition

When it can be defined, (T1, ρ1, τ1) ◦m (T2, ρ2, τ2) = (T, ρ, τ) is given by

1) (T, ρ) is the combed tree obtained by replacing the node τ1
−1(m) by

the tree (T2, ρ2), composing the edge labels as morphisms of C, and
then ‘combing’ the tree so that all twists are at the top.

2) τ is the bijection which inserts the source of T2 into that of T1 at the
mth place.

• Identities: given an object-morphism

α = (σ, f1, . . . , fm; f) : g −→ g′,

ι(α) ∈ Q+(g; g′) is given by a tree with one node, labelled by g, twist
σ, and edges labelled by the fi and f as in the example above.

• Symmetric action: (T, ρ, τ)σ = (T, ρ, σ−1τ)

This is easily seen to satisfy the axioms for a symmetric multicategory.
Note that, given a labelled tree T with n nodes and k leaves, there is an

arrow (T, ρ, τ) ∈ a(Q+) for every permutation ρ ∈ Sk and every bijection
τ : {nodes of T} −→ [n]. Suppose

s(T, ρ, τ) = (f1, . . . , fn)

and t(T, ρ, τ) = f.
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Then, given any ρ1 ∈ Sk, τ : {nodes of T} −→ [n], we have

s(T, ρ1ρ, τ) = (f1, . . . , fn)

and t(T, ρ1ρ, τ) = fρ1

whereas

s(T, ρ, τ1τ) = (fτ1−1(1), . . . fτ1−1(n))

and t(T, ρ, τ1τ) = f.

We observe immediately that Q+ is freely symmetric, since

(T, ρ, τ)σ = (T, ρ, τ) ⇒ σ−1τ = τ

⇒ σ = ι.

However Q+ is not in general object-discrete; we will later see (Proposi-
tion 2.2.2) that Q+ is tidy if Q is tidy.

2.1.2 Slicing a generalised multicategory

Given a generalised multicategory M , we define a slice multicategory M+.
We use the ‘multicategory of function replacement’ as defined in [HMP1],
which plays a role similar to (but more far-reaching than) that of the Baez-
Dolan slice. The slice defined in this section is only a special case of a
multicategory of function replacement, but it is sufficient for the construc-
tion of multitopes. Moreover, for the purpose of comparison it is later
helpful to be able to use this closer analogy of the Baez-Dolan slice.

We first explain how this slice arises from the multicategory of function
replacement as defined in [HMP1], and then give an explicit construction
of the slice multicategory that is analogous to the symmetric case. This
latter construction is the one we continue to use in the rest of the work.

Using the terminology of [HMP1], the slice is defined as follows. Let
L be the language with objects o(M) and arrows a(M), and let F be the
free generalised multicategory on L. So the objects of F are the objects of
M , and the arrows of F are formal composites of arrows of M . We define
a morphism of generalised multicategories h : F −→ M as the identity
on objects, and on arrows the action of composing the formal composite to
yield an arrow of M. Then we defineM+ to be the multicategory of function
replacement on (L,F, h).

Explicitly, the slice multicategory M+ is a generalised multicategory
given by:

• Objects: o(M+) = a(M).

• Arrows: a(M+) is given by configurations for composing arrows of
M .

Such a configuration is given by T = (T, ρT , τT ), where:
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i) T is a planar tree with n nodes labelled by f1, . . . fn ∈ a(M), and
edges labelled by objects of M in such a way that, writing

s(fi) = (xi1, . . . , ximi
),

the node labelled by fi hasm edges coming in, labelled by xi1, . . . , ximi

from left to right, and one edge going out, labelled by t(fi).

ii) ρT ∈ Sk, where k is the number of leaves of T . The composition in
M given by T has specified amalgamation maps giving information
about the ordering of the source; ρT is the permutation induced on
the source.

iii) τT : {nodes of T} −→ [n] is a bijection so that the node N is la-
belled by fτT (N). In fact, specifying τT corresponds to specifying
amalgamation maps in the free multicategory F, and this defines the
amalgamation maps of M+.

Note that whereas in the symmetric case ρ and τ may be chosen freely
for any given T , in this case precisely one ρT and τT is specified for each T .
The source and target of such an arrow T are given by s(T ) = (f1, . . . fn)
and t(T ) = f ∈ a(M), the result of composing the fi according to their
positions in T . Here, the tree T may be thought of as a combed tree as in
the symmetric case, but with all edges labelled by identities.

• Composition

When it can be defined, we have T1 ◦m T2 = T as follows:

i) T is the combed labelled tree obtained from (T1, τT1) by replacing the
node τT1

−1(m) by the combed tree (T2, τT2), combing the tree and
then forgetting the twist at the top.

ii) The amalgamation maps are defined to reorder the source as necessary
according to τT1 , τT2 and τT .

• Identities: 1f is the tree with one node, labelled by f .

This definition is easily seen to satisfy the axioms for a generalised
multicategory. Note that a different choice of amalgamation maps for F

gives rise to different bijections τT and hence different amalgamation maps
in M+, resulting in an isomorphic slice multicategory.

2.1.3 Slicing a (E , T )-multicategory

In [Lei2] the ‘free (E , T )-operad’ construction is used to construct (k + 1)-
cells from k-cells; this gives, for any suitable monad (E , T ), the ‘free (E , T )-
operad’ monad (E , T )′ = (E ′, T ′). In order to compare this construction
with the Baez-Dolan slice, we examine the monad ζ(Q)′. First we must
show that ζ(Q)′ can actually be constructed, that is, that ζ(Q) = (EQ, TQ)
is a suitable monad.

First recall ([Lei2]) that a cartesian monad (E , T ) is suitable if it satisfies:
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i) E has disjoint finite coproducts which are stable under pullback

ii) E has colimits of nested sequences; these commute with pullbacks and
have monic coprojections

iii) T preserves colimits of nested sequences.

Here a nested sequence is a string of composable monics.

Proposition 2.1.1. Let Q be a tidy symmetric multicategory. Then (EQ, TQ)
is a suitable monad.

Proof. Certainly EQ is a suitable category, and we have already shown
that (EQ, TQ) is cartesian. So it remains to show that TQ preserves colimits
of nested sequences.

First observe that a morphism h in Set/S is monic if and only if h is
monic as a morphism in Set, that is, injective. Given a nested sequence

(A0, f0)
i0
≻−→ (A1, f1)

i1
≻−→ (A2, f2) · · · ∈ Set/S

we have a nested sequence

A0
i0
≻−→ A1

i1
≻−→ A2 · · · ∈ Set.

Since Set is suitable, this nested sequence has a colimit A whose coprojec-
tions are monics. Then the morphisms f0, f1, . . . define a cone with vertex

S, inducing a unique morphism A
f
−→ S making everything commute;

(A, f) is then a colimit for the nested sequence in Set/S. So (A, f) is a
colimit for the nested sequence in Set/S exactly when A is a colimit for
the nested sequence in Set.

Having made these observations, it is easy to check that TQ preserves
such colimits. �

2.2 Comparisons

In this section we compare the slice constructions and make precise the
sense in which they correspond to one another. Recall (Sections 1.2.1,
1.2.2) that we have defined functors

GenMulticat
ξ
−→ TidySymMulticat

ζ
−→ CartMonad.

We now show that these functors ‘commute’ with slicing, up to equivalence
(for ξ) and isomorphism (for ζ).

2.2.1 Generalised and symmetric multicategories

We will eventually prove (Corollary 2.2.3) that for any generalised multi-
category M

ξ(M+) ≃ ξ(M)+.
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We prove this by constructing, for any morphism of symmetric multicate-
gories φ : Q −→ ξ(M) a morphism φ+ : Q+ −→ ξ(M+) such that

φ is an equivalence⇒ φ+ is an equivalence.

The result then follows by considering the case φ = 1.
We begin by constructing φ+. Recall

o(Q+) = a(Q)
a(Q+) = {(T, ρ, τ) : T a labelled tree with n nodes, k leaves

ρ ∈ Sk,

τ : {nodes of T}
∼
−→ [n]

edges labelled by morphisms of C}
o(ξ(M+)) = a(M)
a(ξ(M+)) = {(T, σ) : T a labelled tree with n nodes

σ ∈ Sn

edges labelled by identities}.

The idea is that given a way of composing arrows f1, . . . , fn of Q to an
arrow f , we have a way of composing arrows g1, . . . , gn of M to an arrow
g, where

φ(fi) = (gi, σi)

and φ(f) = (g, σ).

Observe that since ξM is object-discrete, we have φa = 1 for all object-
morphisms a ∈ C.

So we define φ+ as follows:

• On objects: if φ(f) = (g, σ), g ∈ a(M) then put φ+(f) = g.

• On object-morphisms: since ξ(M+) is object-discrete, we must have
φ+(α) = 1 for all object-morphisms α.

• On arrows: put φ+ : (T, ρ, τ) 7−→ (T̄ , τ ◦τT̄
−1), where T̄ is the labelled

planar tree obtained as follows. Given a node with label f say, and
φ(f) = (g, σ):

i) replace the label with g

ii) ‘twist’ the inputs of the node according to σ

iii) proceed similarly with all nodes, make all edge labels identities,
then comb and ignore the twist at the top of the resulting tree
(since the twist in M+ is determined by the tree).

For example, suppose T is given by

T1 T2 Tn

f

. . .
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where the Ti are subtrees of T , and φ(f) = (g, σ). Then steps (i) and (ii)
above give

Tσ(1) Tσ(2) Tσ(n)

g

. . .

and T̄ is then defined inductively on the subtrees. NodeN in T̄ is considered
to be the image of node N in T under the operation T −→ T̄ .

Writing

s(T, ρ, τ) = (f1, . . . , fn)

and t(T, ρ, τ) = f

we check that

s(φ+(T, ρ, τ)) = (φ+(f1), . . . , φ
+(fn))

and t(φ+(T, ρ, τ)) = φ+(f).

Writing s(T̄ , τ ◦ τ−1
T̄

) = (g1, . . . , gn) in ξ(M), we have, in M+

s(T̄ ) = (g
τ◦τ−1

T̄
(1), . . . , gτ◦τ−1

T̄
(n))

so node N is labelled in T̄ by g
τ◦τ−1

T̄
(τT̄ (N)) = gτ(N) and in T by fτ(N). So

by definition of T̄ we have

φ+(fτ(N)) = gτ(N)

so φ+(fi) = gi for each i and

s(T̄ , τ ◦ τ−1
T̄

) = (φ+(f1), . . . , φ
+(fn))

as required. Also, t(T̄ , τ ◦ τ−1
T̄

) = φ+(f) by functoriality of φ and definition
of composition in ξ(M).

We have shown that φ+ is functorial on the object-category o(Q+);
we need to check the remaining conditions for φ+ to be a morphism of
symmetric multicategories. We may now assume that all edge labels are
identities since they all become identities under the action of φ+.

• φ+ preserves identities:

1f ∈ a(Q
+) is (T, ι, ι) where T has one node, labelled by f . So we have

φ+(1f ) = T where T has one node, labelled by φ+(f), and φ+(1f ) = 1φ+(f).
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• φ+ preserves composition: We need to show

φ+(α ◦m β) = φ+(α) ◦m φ+(β).

Now, the underlying trees are the same by functoriality of φ, the per-
mutation of leaves is the same by coherence for amalgamation maps of M ,
and the node ordering is the same by definition of φ+.

• φ+ preserves symmetric action:

φ+((T, ρ, τ)σ)) = φ+(T, ρ, σ−1τ)

= (T̄ , σ−1τ ◦ τT̄
−1)

= (T̄ , τ ◦ τT̄
−1)σ

= (φ+(T, ρ, τ))σ.

So φ+ is a morphism of symmetric multicategories.

Proposition 2.2.1. Let Q be a symmetric multicategory, M a generalised
multicategory and φ : Q −→ ξ(M) a morphism of symmetric multicate-
gories. If φ is an equivalence then φ+ is an equivalence.

This enables us to prove the following proposition:

Proposition 2.2.2. If Q is tidy then Q+ is tidy.

Proof of Proposition 2.2.1. First we observe that given any such
morphism φ, Q is freely symmetric:

ασ = α ⇒ φ(ασ) = φ(α)σ = φ(α) ∈ ξ(M)

⇒ σ = ι,

the second implication following from ξ(M) being freely symmetric.
Now, given that φ is full, faithful and essentially surjective on the cat-

egory of objects, and full and faithful, we prove the proposition in the
following steps:

i) φ+ is surjective on objects

ii) φ+ is full on the category of objects

iii) φ+ is faithful on the category of objects

iv) φ+ is full

v) φ+ is faithful

Proof of (i). Recall the action of φ+ on objects: let f ∈ o(Q+) = a(Q)
with φ(f) = (g, σ) then φ+ : f 7−→ g. Now, given any g ∈ o(ξ(M+)) =
a(M), we have (g, ι) ∈ a(ξ(M)). φ is full and surjective, so there exists
f ∈ a(Q) such that φ(f) = (g, σ) and φ+(f) = g. �
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Proof of (ii). ξ(M+) is object-discrete so we only need to show that if
φ+(f1) = φ+(f2) then there is a morphism f1 −→ f2 in o(Q+). Now

φ+(f1) = φ+(f2) ⇒ φ(f1) = φ(f2)σ for some permutation σ

= φ(f2σ).

Suppose
f1 : a1, . . . , an −→ a

and f2σ : b1, . . . , bn −→ b.

Then we must have φ(ai) = φ(bi) for all i, and φ(a) = φ(b). So there exist
morphisms

gi : bi −→ ai

and g : a −→ b

and we have
f2σ = g ◦ f1 ◦ (g1, . . . , gn)

giving a morphism f1 −→ f2 as required. �

Proof of (iii). An arrow α : f1 −→ f2 is uniquely of the form
(σ, g1, . . . , gn; g) with

gi : s(f2)σ(i) −→ s(f1)i
and g : t(f1) −→ t(f2)

as arrows of C. Since φ is faithful on the category of objects and ξ(M) is
object-discrete, there can only be one such map. �

Proof of (iv). Given f1, . . . , fn, f ∈ o(Q
+) and

(T, σ) : (φ+(f1), . . . , φ
+(fn)) −→ φ+(f) ∈ ξ(M+)

we seek
(T ′, ρ, τ) : (f1, . . . , fn) −→ f ∈ Q+

such that
φ+(T ′, ρ, τ) = (T, σ)

i.e. such that T̄ ′ = T and τ ◦ τT̄
−1 = σ.

Write φ(f) = (g, α) and for each i, φ(fi) = (gi, αi). Then φ+(fi) = gi

and φ+(f) = g. (T, σ) is a configuration for composing the gi to yield g, so
we certainly have a configuration for composing the (gi, αi) to yield gi as
follows: replace node label gi by (gi, αi) and insert a twist αi

−1 above the
node, then comb and add the necessary twist at the top.

This gives a configuration for composing the fi as follows. We have

t(gi, αi) = s(gk, αk)m ⇒ φ(t(fi)) = φ(s(fk)m).

Now φ is faithful on the category of objects, so there exists a morphism

t(fi) −→ s(fk)m
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and we label the edge joining t(fi) and s(fi)m with this object-morphism.
So this gives a configuration for composing the fi, to yield h, say, with
φ(h) = φ(f). That is, we have a morphism

(f1, . . . , fn)
θ
−→ h

such that φ+(θ) = (T, σ).

Now φ is full on the category of objects, so if φ(h) = φ(f) then there is
a morphism α : h −→ f in o(Q+). So we have

(f1, . . . , fn)
θ
−→ h

ι(α)
−→ f

and φ+(ι(α)) is the identity since ξ(M+) is object-discrete. So

φ+(ι(α) ◦ θ) = φ+(θ) = (T, σ)

as required. �

Proof of (v). Suppose φ+(α) = φ+(β). Then, writing

α = (T1, ρ1, τ1) : (f1, . . . , fn) −→ f
β = (T2, ρ2, τ2) : (f1, . . . , fn) −→ f

we have T̄1 = T̄2 = T̄ , say, and τ1 ◦ τT̄1

−1 = τ2 ◦ τT̄2

−1 so τ1 = τ2. So given
any node N in T̄ , its pre-image in T1 has the same label fi as its pre-image
in T2. The same is true of edge labels, since φ is faithful on the category
of objects.

Then the tree T1 may be obtained from T̄ as follows. Suppose φ(fi) =
(gi, σ) and φ(f) = g. Then for the node labelled by gi, apply the twist σ−1

to the edges above it, and then relabel the node with fi. This process may
also be applied to obtain the tree T2. Since the process is the same in both
cases, we have T1 = T2 = T , say.

Finally, suppose f ′ is the arrow obtained from composing according to
T . Then by the action of α, f = f ′ρ1, and by the action of β, f = f ′ρ2.
Then, since Q is freely symmetric, ρ1 = ρ2, so α = β as required. �

Proof of Proposition 2.2.2. Given a tidy symmetric multicategory Q
we need to show that Q+ is also tidy.

Recall (Lemma 1.2.5) that a symmetric multicategory Q is tidy if and
only if it is equivalent to one in the image of ξ, ξM say, with equivalence
given by

φ : Q −→ ξ(M).

Then by Proposition 2.2.1 φ+ is an equivalence

φ+ : Q+ −→ ξ(M+)

so Q+ is tidy as required. �
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Corollary 2.2.3. Let M be a generalised multicategory. Then

ξ(M)+ ≃ ξ(M+)

as symmetric multicategories with a category of objects.

Proof. Put Q = ξ(M), φ = 1 in Proposition 2.2.1. �

2.2.2 Symmetric multicategories and cartesian monads

We now compare Leinster slicing with Baez-Dolan slicing. Since ζ(Q) =
(EQ, TQ) is suitable (Proposition 2.1.1), we can form ζ(Q)′ = (EQ

′, TQ
′),

the free (EQ, TQ)-operad monad. Also, Q+ is tidy since Q is tidy (Propo-
sition 2.2.2), so we can form the monad ζ(Q+) = (EQ+, TQ+). For the
comparison, we have the following result.

Proposition 2.2.4. Let Q be a tidy symmetric multicategory. Then

ζ(Q)′ ∼= ζ(Q+)

that is
(EQ

′, TQ
′) ∼= (EQ+, TQ+)

in the category CartMonad.

This proof is somewhat technical and we defer it to Appendix A. Infor-
mally, the idea is as follows. TQ+ takes a set A of ‘labels for arrows of Q’
and returns the set A2 of configurations for composing labelled arrows ac-
cording to their underlying arrows. On the other hand, T ′Q takes a diagram
of the form

TQ

(

S
↓1
S

)

(

A
↓
S

)

(

S
↓1
S

)

� ^

and forms the free (EQ, TQ) multicategory on it, with underlying graph

TQ

(

S
↓1
S

)

(

A1
↓
S

)

(

S
↓1
S

)

� ^

.
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So T ′Q gives the set A1 of all formal composites of arrows labelled in A
according to the structure of TQ, which is precisely the set of configurations
as above.

Recall that

ζ(Q1) ∼= ζ(Q2) ⇐⇒ Q1 ≃ Q2.

We immediately deduce the following result, comparing all three processes
of slicing.

Corollary 2.2.5. Let M be a generalised multicategory. Then

ζξ(M+) ∼= ζ(ξ(M)+) ∼= ζξ(M)′.

2.3 Opetopes and multitopes

In this section we compare the construction of opetopes and multitopes,
applying the results we have already established. Opetopes and multitopes
are constructed by iterating the slicing process. Note that the ‘opetopes’
defined in [Lei2] are not a priori the same as those defined in [BD2]; we
refer to the former as ‘Leinster opetopes’.

2.3.1 Opetopes

For any symmetric multicategory Q we write

Qk+ =

{

Q k = 0

(Q(k−1)+)
+

k ≥ 1

Let I be the symmetric multicategory with precisely one object, precisely
one (identity) object-morphism, and precisely one (identity) arrow. A k-
dimensional opetope, or simply k-opetope, is defined in [BD2] to be an object
of Ik+. We write Ck = o(Ik+), the category of k-opetopes.

2.3.2 Multitopes

Multitopes are defined in [HMP1] using the multicategory of function re-
placement. We give the same construction here, but state it in the language
of slicing; this makes the analogy with Section 2.3.1 clear.

For any generalised multicategory M we write

Mk+ =

{

M k = 0
(M(k−1)+)

+
k ≥ 1

Let J be the generalised multicategory with precisely one object and pre-
cisely one (identity) morphism. Then a k-multitope is defined to be an
object of Jk+. We write Pk = o(Jk+), the set of k-multitopes; we will also
regard this as a discrete category.
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2.3.3 Leinster opetopes

In [Lei2], k-opetopes are defined by a sequence (Set/Sk, Tk) of cartesian
monads given by iterating the slice as follows.

For any cartesian monad (E ,T) write

(E , T )k
′
=

{

(E , T ) k = 0

((E , T )(k−1)′)
′

k ≥ 1

Put (E0, T0) = (Set, id) and for k ≥ 1 put (Ek, Tk) = (Set, id)k
′
. It follows

that for each k, (Ek, Tk) is of the form (Set/Sk, Tk) where S0 = 1 and Sk+1

is given by
(

Sk+1
↓
Sk

)

= Tk

(

Sk
↓ 1
Sk

)

Then Leinster k-opetopes are defined to be the elements of Sk; as above,
we will regard Sk as a discrete category.

2.3.4 Comparisons

We first compare opetopes and multitopes.

Proposition 2.3.1. For each k ≥ 0

ξ(Jk+) ≃ Ik+.

Proof. By induction. First observe that ξ(J) ∼= I and write φ for this
isomorphism. So for each k ≥ 0 we have

φk+ : Ik+ −→ ξ(Jk+),

where

φk+ =

{

φ k = 0

(φ(k−1)+)+ k ≥ 1

Now I is (trivially) tidy, so by Proposition 2.2.2, Ik+ is tidy for each
k ≥ 0. So by Proposition 2.2.1, φk+ is an equivalence for all k ≥ 0. �

We now compare opetopes and Leinster opetopes.

Proposition 2.3.2. For each k ≥ 0

ζ(Ik+) ∼= (Set, id)k
′
= (Set/Sk, Tk).

Proof. By induction. For k = 0 we need to show

(EIk+ , TIk+) ∼= (Set, id).

Now EI = Set/SI where SI ≃ o(I) = 1. So EI ∼= Set/1 ∼= Set. Given any
(

X
↓ !
1

)

∈ Set/1, TI

(

X
↓
1

)

is equivalent to the pullback
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eltI

· FX op

F1op

-

-
? ?

t .

But I has only one arrow, which is unary (the identity), so

TI

(

X
↓
1

)

∼=

(

X
↓
1

)

and
(EI , TI) ∼= (Set, id)

as required.
Now suppose ζ(I(k−1)+) ∼= (Set, id)(k−1)′ . Then by Proposition 2.2.4

we have
ζ(Ik+) ∼= ζ(I(k−1)+)′ ∼= (Set, id)k

′

so by induction the result is true for all k ≥ 0. �

Then on objects, the above equivalences give the following result.

Corollary 2.3.3. For each k ≥ 0

Pk ≃ Ck ≃ Sk.

We eventually aim to define a category Opetope of opetopes of all
dimensions, whose morphisms are ‘face maps’ of opetopes. In [HMP1] Her-
mida, Makkai and Power explicitly define Multitope, the category of mul-
titopes; Baez and Dolan do not give this explicit construction. In Chapter 3
we give an explicit construction of Opetope. Assuming the underlying idea
is the same, this would be equivalent to the category Multitope, but we
do not attempt to prove it in this thesis.



Chapter 3

The category of opetopes

In this chapter we give an explicit construction of the category Opetope
of opetopes. This construction will enable us, in Chapter 4, to prove that
the category of opetopic sets is in fact a presheaf category.

In Chapter 2 we constructed, for each k ≥ 0, a category Ck of k-
opetopes. For the category Opetope of opetopes of all dimensions, the idea
is that each category Ck should be a full subcategory of Opetope; further-
more there should be ‘face maps’ exhibiting the constituent m-opetopes,
or ‘faces’ of a k-opetope, for m ≤ k. We refer to the m-opetope faces as
m-faces.

The (k− 1)-faces of a k-opetope α should be the (k− 1)-opetopes of its
source and target; these should all be distinct. Then each of these faces has
its own (k − 2)-faces, but all these (k − 2)-opetopes should not necessarily
be considered as distinct (k − 2)-faces in α. For α is a configuration for
composing its (k−1)-faces at their (k−2)-faces, so the (k−2)-faces should
be identified with one another at places where composition is to occur.
That is, the composite face maps from these (k − 2)-opetopes to α should
therefore be equal. Some further details are then required to deal with
isomorphic copies of opetopes.

Recall that a ‘configuration’ for composing (k−1)-opetopes is expressed
as a tree (see Section 2.1.1) whose nodes are labelled by the (k−1)-opetopes
in question, with the edges giving their inputs and outputs. So composition
occurs along each edge of the tree, via an object-morphism label, and thus
the tree tells us which (k − 1)-opetopes are identified.

In order to express this more precisely, we first give a more formal
description of trees (Section 3.1.1). In fact, this leads to an abstract de-
scription of trees as certain Kelly-Mac Lane graphs. However, as this is not
used in the rest of the work, we include it Appendix B.

3.1 Background on trees

Recall the trees introduced in Section 2.1.1 to describe the morphisms of a
slice multicategory. These are ‘labelled combed trees’ with ordered nodes.
In fact, we will first consider the unlabelled version of such trees, since the
labelled version follows easily. For example the following is a tree:
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1

2

3
4

5

Explicitly, a tree T = (T, ρ, τ) consists of

i) A planar tree T

ii) A permutation ρ ∈ Sl where l = number of leaves of T

iii) A bijection τ : {nodes of T} −→ {1, 2, . . . , k} where k = number of
nodes of T ; equivalently an ordering on the nodes of T .

Note that there is a ‘null tree’ with no nodes

.

3.1.1 Formal description of trees

In this section we give a formal description of the above trees, characterising
them as connected graphs with no closed loops (in the conventional sense
of ‘graph’). This will enable us, in Section 3.2, to determine which faces of
faces are identified in an opetope.

Note that the material in this section will be useful in Appendix B. It
enables us, in Section B.2.2, to express a tree as a Kelly-Mac Lane graph;
it also enables us, in Section B.2.5, to show that all allowable graphs of the
correct shape arise in this way.

We consider a tree with k nodes N1, . . . ,Nk where Ni has mi inputs
and one output. Let N be a node with (

∑

i
mi) − k + 1 inputs; N will be

used to represent the leaves and root of the tree.
Then a tree is given by a bijection

∐

i

{inputs of Ni}
∐

{output of N} −→
∐

i

{output of Ni}
∐

{inputs of N}

since each input of a node is either connected to a unique output of another
node, or it is a leaf, that is, input of N . Similarly each output of a node
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is either attached to an input of another node, or it is the root, that is,
output of N .

We express this formally as follows.

Lemma 3.1.1. Let T be a tree with nodes N1, . . . ,Nk, where Ni has inputs
{xi1, . . . , ximi

} and output xi. Let N be a node with inputs {z1, . . . , zl} and
output z, with

l = (
k
∑

i=1

mi)− k + 1.

Then T is given by a bijection

α :
∐

i

{xi1, . . . , ximi
}
∐

{z} −→
∐

i

{xi}
∐

{z1, . . . , zl}.

Proof. We construct the bijection α.

Consider xij on the left hand side. This is the jth input of Ni, which
is either

i) joined to the output of a unique Nr, in which case α(xij) = xr, or

ii) the pth leaf of the tree, in which case α(xij) = zp.

Finally, z is the root of the tree, so must be the output of a unique Nr, so
α(z) = xr.

For the inverse, consider xr on the right hand side. This is the output
of the rth node, so is either

i) joined to the jth input of a uniqueNi, in which case α−1(xr) = α(xij),
or

ii) is the root of the tree, in which case α−1(xr) = z.

Each zr is a leaf of the tree, so must be the jth input of a unique Ni,
so α−1(zr) = xij.

α−1 thus defined is inverse to α, so α is a bijection.

Note that if k = 0 we have the null tree with no nodes; then l = 1 and
N has one input z1. Then the bijection α is given by α(z) = z1.

�

For example, consider

N1 =

x1 x2 x3

x

y1 y2

N2 =

y

z1 z2

N =

z3 z4

z

.

Then a tree
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N1

N2

is given by the following bijection:

{x1, x2, x3, y1, y2, z} −→ {x, y, z1, z2, z3, z4}
x1 7−→ z1
x2 7−→ z3
x3 7−→ z4
y1 7−→ x
y2 7−→ z2
z 7−→ y.

For the converse, every such bijection gives a graph, but it is not nec-
essarily a tree. For example

x1 7−→ y
x2 7−→ z3
x3 7−→ z4
y1 7−→ x
y2 7−→ z2
z 7−→ z1

gives the following graph:

.

So we need to ensure that the resulting graph has no closed loops; the use of
the ‘formal’ node N then ensures connectedness. We express this formally
as follows.

Lemma 3.1.2. Let N1, . . . ,Nk,N be nodes where Ni has inputs {xi1, . . . , ximi
}

and output xi, and N has inputs {z1, . . . , zl} and output z, with l = (
k
∑

i=1
mi)−

k + 1. Let α be a bijection
∐

i

{xi1, . . . , ximi
}
∐

{z} −→
∐

i

{xi}
∐

{z1, . . . , zl}.
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Then α defines a graph with nodes N1, . . . ,Nk.

Lemma 3.1.3. Let α be a graph as above. Then α has a closed loop if and
only if there is a non-empty sequence of indices

{t1, . . . , tn} ⊆ {1, . . . , k}

such that for each 2 ≤ j ≤ n

α(xtjbj
) = xtj−1

for some 1 ≤ bj ≤ mj, and

α(xt1b1) = xtn

for some 1 ≤ b1 ≤ m1.

Proof. A closed loop in α is a sequence of nodes

{Nt1 , . . . ,Ntn}

such that for each 2 ≤ j ≤ n, Ntj is joined to Ntj−1 , and also Nt1 is joined
to Ntn .

That is, for each 2 ≤ j ≤ n, some leaf of Ntj is joined to the root of
Ntj−1 , and also some leaf of Nt1 is joined to Ntn . This is precisely the case
described formally in the Lemma, with the bj giving the leaves in question.

�

For example in the above case we have

α : x11 7−→ x2

x12 7−→ z3
x13 7−→ z4
x21 7−→ x1

x22 7−→ z2
z 7−→ z1

which has a loop given by indices {1, 2}, since

α(x21) = x1 and α(x11) = x2.

Note that a graph with no nodes cannot satisfy the above condition
since the sequence {Nt1 , . . . , Ntn} is required to be non-empty.

Corollary 3.1.4. A tree with nodes N1, . . . ,Nk is precisely a bijection
α as in Lemma 3.1.2, such that there is no sequence of indices as in
Lemma 3.1.3.

Proof. α defines a graph; this is a tree if and only if there is no closed
loop. Note that if k = 0 we have a bijection

α : {z} −→ {z1}

that is, the null tree. �
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3.1.2 Labelled trees

For the construction of opetopes we require the ‘labelled’ version of the
trees presented in Section 3.1. A tree labelled in a category C is a tree
as above, with each edge labelled by a morphism of C considered to be
pointing ‘down’ towards the root.

Proposition 3.1.5. Let N1, . . . ,Nk,N be nodes where Ni has inputs

{xi1, . . . , ximi
}

and output xi, and N has inputs {z1, . . . , zl} and output z, with

l = (
k
∑

i=1

mi)− k + 1.

Then a labelled tree with these nodes is given by a bijection

α :
∐

i

{xi1, . . . , ximi
}
∐

{z} −→
∐

i

{xi}
∐

{z1, . . . , zl}

satisfying the conditions as above, together with, for each

y ∈
∐

i

{xi1, . . . , ximi
}
∐

{z}

a morphism f ∈ C giving the label of the edge joining y and α(y). Then
y is considered to be labelled by the object cod(f) and α(y) by the object
dom(f).

Proof. Follows immediately from Corollary 3.1.4 and the definition. �

3.2 The category of opetopes

In Section 2.3.1 we constructed for each k ≥ 0 the category Ck of k-
opetopes. We now construct a category Opetope of opetopes of all di-
mensions whose morphisms are, essentially, face maps. Each category Ck

is to be a full subcategory of Opetope, and there are no morphisms from
an opetope to one of lower dimension.

We construct the category Opetope = O as follows. Write Ok = Ck.
For the objects:

ob O =
∐

k≥0

Ok.

The morphisms of O are given by generators and relations as follows.

• Generators

1) For each morphism f : α −→ β ∈ Ok there is a morphism

f : α −→ β ∈ O.



3.2 The category of opetopes 55

2) Let k ≥ 1 and consider α ∈ Ok = o(Ik+) = elt(I(k−1)+). Write
α ∈ I(k−1)+(x1, . . . , xm;x). Then for each 1 ≤ i ≤ m there is a
morphism

si : xi −→ α ∈ O

and there is also a morphism

t : x −→ α ∈ O.

We write Gk for the set of all generating morphisms of this kind.

Before giving the relations on these morphisms we make the following
observation about morphisms in Ok. Consider

α ∈ I(k−1)+(x1, . . . , xm;x)

β ∈ I(k−1)+(y1, . . . , ym; y)

A morphism α
g
−→ β ∈ Ok is given by a permutation σ and morphisms

xi
fi−→ yσ(i)

x
f
−→ y ∈ Ok−1

So for each face map γ there is a unique ‘restriction’ of g to the specified
face, giving a morphism γg of (k − 1)-opetopes.

Note that, to specify a morphism in the category FOk−1
op ×Ok−1 the

morphisms fi above should be in the direction yσ(i) −→ xi, but since these
are all unique isomorphisms the direction does not matter; the convention
above helps the notation. We now give the relations on the above generating
morphisms.

• Relations

1) For any morphism

α
g
−→ β ∈ Ok

and face map
xi

si−→ α

the following diagrams commute

xi

si - α x
t - α

yσ(i)

si(g)

?

sσ(i)

- β

g

?
y

t(g)

?

t
- β

g

?

We write these generally as

x
γ - α

y

γg

?

γ′
- β

g

?
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2) Faces are identified where composition occurs: consider θ ∈ Ok where
k ≥ 2. Recall that θ is constructed as an arrow of a slice multicate-
gory, so is given by a labelled tree, with nodes labelled by its (k− 1)-
faces, and edges labelled by object-morphisms, that is, morphisms of
Ok−2.

So by the formal description of trees (Section 3.1.1), θ is a certain
bijection, and the elements that are in bijection with each other are
the (k−2)-faces of the (k−1)-faces of θ; they are given by composable
pairs of face maps of the second kind above. That is, the node labels
are given by face maps α

γ
−→ θ and then the inputs and outputs of

those are given by pairs

x
γ1−→ α

γ2−→ θ

where γ2 ∈ Gk and γ1 ∈ Gk−1. Now, if

x
γ1−→ α

γ2−→ θ

and y
γ3
−→ β

γ4
−→ θ

correspond under the bijection, there must be a unique object-morphism

f : x −→ y

labelling the relevant edge of the tree. Then for the composites in O
we have the relation: the following diagram commutes

x
γ1 - α

HHHHH
γ2

j
θ

y

f

? γ3 - β
�����

γ4

*
.

3) Composition in Ok is respected, that is, if g ◦ f = h ∈ Ok then
g ◦ f = h ∈ O.

4) Identities in Ok are respected, that is, given any morphism x
γ
−→ α ∈

O we have γ ◦ 1x = γ.

Note that only the relation (2) is concerned with the identification of
faces with one another; the other relations are merely dealing with isomor-
phic copies of opetopes.

We immediately check that the above relations have not identified any
morphisms of Ok.

Lemma 3.2.1. Each Ok is a full subcategory of O.

Proof. Clear from definitions. �

We now check that the above relations have not identified any (k − 1)-
faces of k-opetopes.
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Proposition 3.2.2. Let x ∈ Ok−1, α ∈ Ok and γ1, γ2 ∈ Gk with

γ1, γ2 : x −→ α

Then γ1 = γ2 ∈ O =⇒ γ1 = γ2 ∈ Gk.

We prove this by expressing all morphisms from (k − 1)-opetopes to
k-opetopes in the following “normal form”; this is a simple exercise in term
rewriting (see [JWK]).

Lemma 3.2.3. Let x ∈ Ok−1, α ∈ O. Then a morphism

x −→ α ∈ O

is uniquely represented by
x

γ
−→ α

or a pair

x
f
−→ y

γ
−→ α

where f ∈ Ok−1 and γ ∈ Gk.

Proof. Any map x −→ α is represented by terms of the form

x
f1
−→ x1

f2
−→ · · ·

fm
−→ xm

γ
−→ α1

g1
−→ · · ·

gj−1
−→ αj

gj
−→ α

where each fi ∈ Ok−1 and each gr ∈ Ok. Equalities are generated by
equalities in components of the following forms:

1)
γ - g - =

γg - γ′ -

2)
f - f ′ - =

f ′ ◦ f - ∈ Ok−1

3)
g - g′ - =

g′ ◦ g - ∈ Ok

4)
1 - γ - =

γ -

where γ ∈ Gk and γg and γ′ are as defined above. That is, equalities in
terms are generated by equations t = t′ where t′ is obtained from t by
replacing a component of t of a left hand form above, with the form in the
right hand side, or vice versa.

We now orient the equations in the term rewriting style in the direction

=⇒

from left to right in the above equations. We then show two obvious prop-
erties:

1) Any reduction of t by =⇒ terminates in at most 2j +m steps.

2) If we have
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t

t′ t′′
+ s

then there exists t′′′ with

t

t′ t′′

t′′′
R

+ s

	

where the dotted arrows indicate a chain of equations (in this case of
length at most 2).

The first part is clear from the definitions; for the second part the only
non-trivial case is for a component of the form

γ - g1 - g2 - .

This reduces uniquely to

γ(g2 ◦ g1)- γ′ -

since ‘restriction’ is unique, as discussed earlier.
It follows that, for any terms t and s, t = s if and only if t and s reduce

to the same normal form as above. �

Proof of Proposition 3.2.2 . γ1 and γ2 are in normal form. �

Some low-dimensional examples of face maps are given in Appendix B.



Chapter 4

Opetopic Sets

In this chapter we examine the theory of opetopic sets. An opetopic set is
to be the data for an n-category. The idea is that the category of opetopic
sets should be the category of presheaves on the category of opetopes. How-
ever, in [BD2] the category of opetopes is not described fully, so opetopic
sets are defined directly instead, and no equivalence with a presheaf cat-
egory is proved. We are now able to prove such an equivalence using the
construction of the previous chapter.

We begin by following through our modifications to the opetopic theory
to include the theory of opetopic sets. We then use results of [Kel1] to prove
that the category of opetopic sets is indeed equivalent to the category of
presheaves on O, the category of opetopes defined in Chapter 3.

Recall that, by the equivalences proved in the Chapter 2, we have equiv-
alent categories of opetopes, multitopes and Leinster opetopes. So we may
define equivalent categories of opetopic sets by taking presheaves on any of
these three categories. In the following definitions, although the opetopes
we consider are the ‘symmetric multicategory’ kind, the concrete descrip-
tion of an opetopic set is not precisely as a presheaf on the category of
these opetopes. The sets given in the data are indexed not by opetopes
themselves but by isomorphism classes of opetopes; so at first sight this
resembles a presheaf on the category of Leinster opetopes. However, we do
not pursue this matter here, since the equivalences proved in Chapter 2 are
sufficient for the purposes of this thesis.

We adopt this presentation in order to avoid naming the same cells
repeatedly according to the symmetries; that is, we do not keep copies of
cells that are isomorphic by the symmetries.

4.1 Definitions

In [BD2], weak n-categories are defined as opetopic sets satisfying certain
universality conditions. However, opetopic sets are defined using only sym-
metric multicategories with a set of objects; in the light of the results of
the previous chapters, we seek a definition using symmetric multicategories
with a category of objects. The definitions we give here are those given in
[BD2] but with modifications as demanded by the results of the previous
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chapters.
The underlying data for an opetopic n-category are given by an opetopic

set. Recall that, in [BD2], a Q-opetopic set X is given by, for each k ≥ 0,
a symmetric multicategory Q(k) and a set X(k) over o(Q(k)), where

Q(0) = Q

and Q(k + 1) = Q(k)X(k)
+.

An opetopic set is then an I-opetopic set, where I is the symmetric multi-
category with one object and one (identity) arrow.

The idea is that the category of opetopic sets should be equivalent to
the presheaf category

[Opetopeop,Set]

and we use this to motivate our generalisation of the Baez-Dolan definitions.
We have constructed (Section 2.3.1) categories C(k) of k-opetopes, and

each C(k) is a full subcategory of Opetope. A functor

Opetopeop −→ Set

may be considered as assigning to each opetope a set of ‘labels’.
Recall that for each k, C(k) is equivalent to a discrete category. So it

is sufficient to specify ‘labels’ for each isomorphism class of opetopes. (In
fact, we are thus considering labels for ‘Leinster opetopes’ but we do not
pursue this idea any further here.)

Recall (Section 1.2.1) that we call a symmetric multicategory Q tidy
if it is freely symmetric with a category of objects C equivalent to a dis-
crete category. Throughout this chapter we say ‘Q has object-category C

equivalent to S discrete’ to mean that S is the set of isomorphism classes
of C, so C is equipped with a morphism C

∼
−→ S. We begin by defining

the construction used for ‘labelling’ as discussed above. The idea is to give
a set of labels as a set over the isomorphism classes of objects of Q, and
then to ‘attach’ the labels using the following pullback construction.

Definition 4.1.1. Let Q be a tidy symmetric multicategory with category of
objects C equivalent to S discrete. Given a set X over S, that is, equipped
with a function f : X −→ S, we define the pullback multicategory QX as
follows.

• Objects: o(QX) is given by the pullback

X

. C

S

-

-
? ?

f

∼

.

Observe that the morphism on the left is an equivalence, so o(QX) is
equivalent to X discrete. Write h for this morphism.
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• Arrows: given objects a1, . . . ak, a ∈ o(QX) we have

QX(a1, . . . , ak; a) ∼= Q(fh(a1), . . . , fh(ak); fh(a)).

• Composition, identities and symmetric action are then inherited from
Q.

We observe immediately that since Q is tidy, QX is tidy. Also note
that if Q is object-discrete this definition corresponds to the definition of
pullback symmetric multicategory given in [BD2].

We are now ready to describe the construction of opetopic sets.

Definition 4.1.2. Let Q be a tidy symmetric multicategory with object-
category C equivalent to S discrete. A Q-opetopic set X is defined recur-
sively as a set X(0) over S together with a QX

+-opetopic set X1.

So a Q-opetopic set consists of, for each k ≥ 0:

• a tidy symmetric multicategory Q(k) with object-category C(k) equiv-
alent to S(k) discrete

• a set X(k) and function X(k)
fk−→ S(k)

where

Q(0) = Q

and Q(k + 1) = Q(k)X(k)
+.

We refer to X1 as the underlying Q(k)X(k)
+-opetopic set of X.

We now define morphisms of opetopic sets. Suppose we have opetopic
sets X and X ′ with notation as above, together with a morphism of sym-
metric multicategories

F : Q −→ Q′

and a function
F0 : X(0) −→ X ′(0)

such that the following diagram commutes

X ′(0)

X(0) S(0)

S′(0)

-

-
? ?

F0 F

f0

f ′0

where the morphism on the right is given by the action of F on objects.
This induces a morphism

QX(0) −→ Q′X′(0)

and so a morphism
QX(0)

+ −→ Q′X′(0)
+
.

We make the following definition.
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Definition 4.1.3. A morphism of Q-opetopic sets

F : X −→ X ′

is given by:

• an underlying morphism of symmetric multicategories and function
F0 as above

• a morphism X1 −→ X ′1 of their underlying opetopic sets, whose un-
derlying morphism is induced as above.

So F consists of

• a morphism Q −→ Q′

• for each k ≥ 0 a function Fk : X(k) −→ X ′(k) such that the following
diagram commutes

X ′(k)

X(k) S(k)

S′(k)

-

-
? ?

Fk

fk

f ′k

where the map on the right hand side is induced as appropriate.

Note that the above notation for a Q-opetopic set X and morphism F
will be used throughout this chapter, unless otherwise specified.

Definition 4.1.4. An opetopic set is an I-opetopic set. A morphism of
opetopic sets is a morphism of I-opetopic sets. We write OSet for the
category of opetopic sets and their morphisms.

Eventually, a weak n-category is defined as an opetopic set with certain
properties. The idea is that k-cells have underlying shapes given by the
objects of Ik+. These are ‘unlabelled’ cells. To make these into fully
labelled k-cells, we first give labels to the 0-cells, via the function X(0) −→
S(0), and then to 1-cells via X(1) −→ S(1), and so on. This idea may be
captured in the following ‘schematic’ diagram.
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Q(2)X(2)
+

Q(2)X(2) Q(2) = Q(1)X(1)
+

Q(1)X(1) Q(1) = Q(0)X(0)
+

Q(0)X(0) Q(0) = I

I+

I2+

I3+

?

?

?

?

?

?

?

+

+

+

+

+

+

+

-

-

-

...

Bearing in mind our modified definitions, we use the Baez-Dolan termi-
nology as follows.

Definitions 4.1.5.

• A k-dimensional cell (or k-cell) is an element of X(k)
(i.e. an isomorphism class of objects of Q(k)X(k) ).

• A k-frame is an isomorphism class of objects of Q(k)
(i.e. an isomorphism class of arrows of Q(k − 1)X(k−1) ).

• A k-opening is an isomorphism class of arrows of Q(k−1), for k ≥ 1.

So a k-opening may acquire (k − 1)-cell labels and become a k-frame,
which may itself acquire a label and become a k-cell. We refer to such a
cell and frame as being in the original k-opening.

On objects, the above schematic diagram becomes:
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3-frames

2-cells

3-openings

2-frames

1-cells

.

2-openings

1-frames

0-cells

3-opetopes

2-opetopes

1-opetopes

0-opetopes

?

?

?

?

?

?

?

+

+

+

+

+

+

+

+

+

+

?

??

???

-

-

-

-

-

-

-

-

--

⊲ ⊲ ⊲

labels for 2-cells labels for 1-cells labels for 0-cells

.
Horizontal arrows represent the process of labelling, as shown; vertical

arrows represent the process of ‘moving up’ dimensions. Starting with a
k-opetope, we have from right to left the progressive labelling of 0-cells,
1-cells, and so on, to form a k-cell at the far left, the final stages being:

k-opening

k-frame

k-cell

labels for constituent (k − 1)-cells

label for k-cell itself
▽

▽

A k-opening acquires labels as an arrow of Q(k − 1), becoming a k-frame
as an arrow of Q(k − 1)X(k−1) . That is, it has (k − 1)-cells as its source
and a (k − 1)-cell as its target.

Definition 4.1.6. A k-niche is a k-opening (i.e. arrow of Q(k−1)) together
with labels for its source only.
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We may represent these notions as follows. Let f be an arrow ofQ(k−1),
so f specifies a k-opening which we might represent as

· · ·

.

Then a niche in f is represented by

· · ·
a1 a2 ar

?

?

where a1, . . . ar are ‘valid’ labels for the source elements of f ; a k-frame is
represented by

· · ·
a1 a2 ar

?

a

where a is a ‘valid’ label for the target of f . Finally a k-cell is represented
by

· · ·
a1 a2 ar

α

a .

Since all symmetric multicategories in question are tidy, we may in each
case represent the same isomorphism class by any symmetric variant of the
above diagrams. Also, we refer to k-cells as labelling k-opetopes, rather
than isomorphism classes of k-opetopes.
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4.2 OSet is a presheaf category

In this section we prove that the category of opetopic sets is a presheaf
category, and moreover, that it is equivalent to the presheaf category

[O op,Set].

To prove this we use [Kel1], Theorem 5.26, in the case V = Set. This
theorem is as follows.

Theorem 4.2.1. Let C be a V-category. In order that C be equivalent
to [E op,V] for some small category E it is necessary and sufficient that
C be cocomplete, and that there be a set of small-projective objects in C
constituting a strong generator for C.

We see from the proof of this theorem that if E is such a set and E is
the full subcategory of C whose objects are the elements of E, then

C ≃ [E op,V].

We prove the following propositions; the idea is to “realise” each isomor-
phism class of opetopes as an opetopic set; the set of these opetopic sets
constitutes a strong generator as required.

Proposition 4.2.2. OSet is cocomplete.

Proposition 4.2.3. There is a full and faithful functor

G : O −→ OSet.

Proposition 4.2.4. Let α ∈ O. Then G(α) is small-projective in OSet.

Proposition 4.2.5. Let

E =
∐

{G(α) | α ∈ O} ⊆ OSet.

Then E is a strongly generating set for OSet.

Corollary 4.2.6. OSet is a presheaf category.

Corollary 4.2.7.
OSet ≃ [Oop,Set].

Proof of Proposition 4.2.2. Consider a diagram

D : I −→ OSet

where I is a small category. We seek to construct a limit Z for D; the set
of cells of Z of shape α is given by a colimit of the sets of cells of shape α
in each D(I).

We construct an opetopic set Z as follows. For each k ≥ 0, Z(k) is a
colimit in Set:

Z(k) =

∫ I∈I

D(I)(k).
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Now for each k we need to give a function

F (k) : Z(k) −→ o(Q(k))

where
Q(k) = Q(k − 1)Z(k−1)

+

Q(0) = I.

That is, for each α ∈ Z(k) we need to give its frame. Now

Z(k) =
∐

I∈I

D(I)(k)
/

∼

where ∼ is the equivalence relation generated by

D(u)(αI′) ∼ αI for all u : I −→ I ′ ∈ I

and αI ∈ D(I)(k).

So α ∈ Z(k) is of the form [αI ] for some αI ∈ D(I)(k) where [αI ] denotes
the equivalence class of αI with respect to ∼.

Now suppose the frame of αI in D(I) is

(β1, . . . , βj)
?
−→ β

where βi, β ∈ D(I)(k−1) label some k-opetope x. We set the frame of [αI ]
to be

( [β1], . . . , [βj ] )
?
−→ [β]

labelling the same opetope x. This is well-defined since a morphism of
opetopic sets preserves frames of cells, so the frame of D(u)(αI) is

( D(u)(β1) , . . . , D(u)(βj) )
?
−→ D(u)(β)

also labelling k-opetope x. It follows from the universal properties of the
colimits in Set that Z is a colimit for D, with coprojections induced from
those in Set. Then, since Set is cocomplete, OSet is cocomplete. �

Proof of Proposition 4.2.3. Let α be a k-opetope. We express α as an
opetopic set G(α) = α̂ as follows, using the usual notation for an opetopic
set. The idea is that the m-cells are given by the m-faces of α.

For each m ≥ 0 set

X(m) = { [(x, f)] | x ∈ Om and x
f
−→ α ∈ O

where [ ] denotes isomorphism class in O/α}.

So in particular we have

X(k) = {[(α, 1)]}

and for all m > k, X(m) = ∅. It remains to specify the frame of [(x, f)].
The frame is an object of

Q(m) = Q(m− 1)X(m−1)
+



68 Chapter 4. Opetopic Sets

so an arrow of

Q(m− 2)X(m−2)
+

labelled with elements of X(m− 1). Now such an arrow is a configuration
for composing arrows of Q(m − 2)X(m−2); for the frame as above, this is
given by the opetope x as a labelled tree. Then the (m− 1)-cell labels are
given as follows. Write

x : y1, . . . , yj −→ y

say, and so we have for each i a morphism

yi −→ x

and a morphism

y −→ x ∈ O.

Then the labels in X(m− 1) are given by

[yi −→ x
f
−→ α] ∈ X(m− 1)

and

[y −→ x
f
−→ α] ∈ X(m− 1).

Now, given a morphism

h : α −→ β ∈ O

we define

ĥ : α̂ −→ β̂ ∈ OSet

by

[(x, f)] 7→ [(x, h ◦ f)]

which is well-defined since if (x, f) ∼= (x′, f ′) then (x, hf) ∼= (x′, hf ′) in
O/α. This is clearly a morphism of opetopic sets.

Observe that any morphism α̂ −→ β̂ must be of this form since the faces
of α must be preserved. Moreover, if ĥ = ĝ then certainly [(α, h)] = [(α, g)].
But this gives (α, h) = (α, g) since there is a unique morphism α −→ α ∈ O
namely the identity. So G is full and faithful as required. �

Proof of Proposition 4.2.4. For any α ∈ Ok we show that α̂ is small-
projective, that is that the functor

ψ = OSet(α̂,−) : OSet −→ Set

preserves small colimits. First observe that for any opetopic set X

ψ(X) = OSet(α̂,X) ∼= {k-cells in X whose underlying k-opetope is α}
⊆ X(k)

and the action on a morphism F : X −→ Y is given by

ψ(F ) = OSet(α̂, F ) : OSet(α̂,X) −→ OSet(α̂, Y )
x 7→ F (x).
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So ψ is the ‘restriction’ to the set of cells of shape α. This clearly preserves
colimits since the cells of shape α in the colimit are given by a colimit of
the sets cells of shape α in the original diagram. �

Proof of Proposition 4.2.5. First note that

α̂ = β̂ ⇐⇒ α ∼= β ∈ O

so
E ∼=

∐

k

Sk

where for each k, Sk is the set of k-dimensional Leinster opetopes. Since
each Sk is a set it follows that E is a set.

We need to show that, given a morphism of opetopic sets F : X −→ Y ,
we have

OSet(α̂, F ) is an isomorphism for all α̂ =⇒ F is an isomorphism.

Now, we have seen above that

OSet(α̂,X) ∼= {cells of X of shape α}

so
OSet(α̂, F ) = F |α = F restricted to cells of shape α.

So
OSet(α̂, F ) is an isomorphism for all α̂

⇐⇒ F |α is an isomorphism for all α ∈ O
⇐⇒ F is an isomorphism.

�

Proof of Corollary 4.2.6. Follows from Propositions 4.2.2, 4.2.3, 4.2.4,
4.2.5 and [Kel1] Theorem 5.26. �

Proof of Corollary 4.2.7. Let E be the full subcategory of OSet whose
objects are those of E. Since G is full and faithful, E is the image of G and
we have

O ≃ E

and hence
OSet ≃ [E op,Set] ≃ [O op,Set].

�
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Chapter 5

Weak n-categories

In this chapter we consider the complete definition of n-category. We begin
by completing our modifications to the Baez-Dolan definition; we then seek
to shed some light on the definition by examining the case n = 2 together
with some preliminary examples.

5.1 Definitions

In [BD2], weak n-categories are defined as opetopic sets satisfying certain
universality conditions. Thus far we have examined only the theory of
opetopes and opetopic sets. It now remains to discuss the notion of uni-
versality.

5.1.1 Universality

In the definition of opetopic n-category, it is universality that deals with
composition, constraints, axioms and coherence. We now modify the Baez-
Dolan definition of universality in the context of the modifications discussed
so far in this work. Furthermore, with clarity in mind we state the definition
in a terser form than in [BD2].

In Section 5.1.2 we will have the following definition: An opetopic n-
category is an opetopic set in which

i) Every niche has an n-universal occupant.

ii) Every composite of n-universals is n-universal.

We use the word ‘composite’ in the following sense. Let a, b and c be k-cells
in an opetopic set X, with k ≥ 1. Given a universal (k + 1)-cell

u : (a, b) −→ c

we say that c is a composite of a and b. Furthermore, we say that u and b
give a factorisation of c through a (and also u and a give a factorisation of
c through b).

If a and b are pasted at the target of b, say, we may represent this as
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· · ·

a

· · ·

b

u
−→

· · ·

c

.

Alternatively, regarding a, b and c as objects of a symmetric multicategory
at the next dimension up, we may represent this as

c

a b

u

.

We will define n-universality for k-cells and for k-cell factorisations.
The definition is by descending induction on k.

Definition 5.1.1. A k-cell α is n-universal if either k > n and α is unique
in its niche, or k ≤ n and (1) and (2) below are satisfied:

(1) Given any k-cell γ in the same niche as α, there is a factorisation
u : (β, α) −→ γ

· · ·

α

β

α
−→

· · ·

γ

.

(2) Any such factorisation is n-universal.

Definition 5.1.2. A factorisation u : (b, a) −→ c of k-cells is n-universal
if k > n, or k ≤ n and (1) and (2) below are satisfied:

(1) Given any k-cell b′ in the same frame as b, and any (k + 1)-cell

v : (b′, a) −→ c

with b′ and a pasted in the same configuration as b and a in the source
of u, there is a factorisation of (k + 1)-cells (u, y) −→ v
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c

a

u

b

b′

y

α
−→

c

b′ a

v

(2) Any such factorisation is itself n-universal.

If n is clear from the context then we simply say ‘universal’.
Note that in the terminology of [BD2], the definition of ‘universal fac-

torisation’ given above corresponds to a special case of ‘balanced punctured
niche’. Furthermore, in each of the above definitions, each clause (1) and
(2) corresponds to the assertion that a certain punctured niche is balanced.

Although we have still only defined ‘opetopic n-category’ in passing,
the following examples concerning particular cases in opetopic n-categories
may help to clarify the above definitions.

Examples 5.1.3.

1) In an opetopic n-category the (unique) universal 1-ary (n + 1)-cells
have the form x −→ x, since we have such universals given by the
targets of universal nullary (n+ 2)-cells

(·) −→ (x→ x).

2) In an opetopic n-category, a factorisation of n-cells is universal if and
only if it is unique. To see this, consider such a universal factorisation
u : (b, a) −→ c. Now any (n+ 1)-cell is unique in its niche and hence
universal, so any (n + 1)-cell v : (b′, a) −→ c is a factorisation. But
then, by universality of the first factorisation, we have a (necessarily
universal) (n + 1)-cell y : b′ −→ b giving b = b′ and u = v, i.e. the
factorisation is unique.

3) In a 1-category, a 1-cell x
f
−→ y is universal if and only if for any

1-cell x
g
−→ z there is a unique factorisation

x

y

z

f ḡ

g

⇓u

.

4) In a 2-category, a 1-cell x
f
−→ y is universal if and only if for any

1-cell x
g
−→ z there is a factorisation as above; however, we do not

demand that such a factorisation be unique, but only universal. That
is, given a 2-cell
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x

y

z

f h

g

⇓θ

there is a unique factorisation

f

g

ḡu θ̄
h
≡〉
v

⇓θ

.

5) In a 3-category, f as above is 3-universal if and only if any such
factorisation v as above is universal (rather than unique). That is,
given any 3-cell

⇓u φ ≡〉
α

⇓θ

there is a unique factorisation

φ ≡〉 θ̄

∆

⇓u θ̄ ≡〉
v

⇓θ ⇓u φ ≡〉
α

⇓θ

.

Definitions 5.1.4.

• An n-coherent Q-algebra is a Q-opetopic set in which

i) Every niche has a universal cell in it (or universal ‘occupant’).

ii) Composites of universals are universal.

• A morphism of n-coherent Q-algebras is simply a morphism of their
underlying Q-opetopic sets.

Observe that an n-coherent Q-algebra is specified uniquely up to iso-
morphism by the setsX(k) and functions fk for k ≤ n+1, since for k ≥ n+2
the sets X(k) and functions fk are induced. A morphism of such is then
uniquely determined by the functions Fk for k ≤ n.

In [BD2] a morphism of n-coherent Q-algebras is required to preserve
universality, yielding a stronger notion. We will later see that for n = 2
this gives weak rather than lax functors of bicategories. For the time being
we consider the lax case only; we discuss strictness in Section 5.2.5.
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5.1.2 Opetopic n-categories

We are now ready to state the definition of n-category. The statement
here is exactly as in [BD2]; the differences have all been absorbed into
the preliminary definitions. However, e note that the exact relationship
between our complete modified definition and the exact Baez-Dolan original
remains unclear.

Definitions 5.1.5.

• An opetopic n-category is an n-coherent I-algebra.

• A lax n-functor is a morphism of n-coherent I-algebras.

We write Opic-n-Cat for the category of opetopic n-categories and lax
n-functors.

So an opetopic n-category is an opetopic set in which

i) Every niche has an n-universal occupant.

ii) Every composite of n-universals is n-universal.

We now restate, in this modified context, a useful proposition from
[BD2]. This is a generalisation of the fact that in a category C, for any
objects a, b we have a ‘homset’ C(a, b) of morphisms a −→ b. Similarly, in a
bicategory B, we have ‘hom-categories’ B(a, b) whose objects are 1-cells and
morphisms 2-cells; so we also have, for any 2-cells α, β, homsets B(α, β).

Thus in an n-category we expect to have ‘hom-(n − m)-categories’ of
m-cells. However, since here the domain of an m-cell is not necessarily
just a single (m − 1)-cell, instead of having just a pair of (m − 1)-cells as
above, we need an m-frame to give the domain and codomain specifying
the hom-category.

Proposition 5.1.6. Let X be an n-coherent Q-algebra. Then for m ≤ n
any m-frame determines an opetopic (n −m)-category.

The idea is first to restrict X to cells of dimension m and above; this
is clearly still (n−m)-coherent. We can then restrict to only those cells in
the given frame α by ‘pulling back’ along the morphism

1
α
−→ S(m).

So we follow Baez-Dolan and use the following construction of ‘pullback
opetopic set’. Let Q and Q′ be tidy symmetric multicategories with object-
categories C and C

′ respectively, with C ≃ S and C
′ ≃ S′ discrete. Let X

be a Q-opetopic set. Suppose we have a morphism S′ −→ S. Then we may
construct a pullback opetopic set X ′ by induction as follows. Let X ′(0) be
given by the pullback

S′(0)

X ′(0) X(0)

S(0)

-

-
? ?

.



76 Chapter 5. Weak n-categories

Now we have equivalences

o(QX(0)
+)

∼
−→ S(1),

o(Q′
X(0)

+)
∼
−→ S′(1)

where S(1) and S′(1) are discrete. So the morphism

X ′(0) −→ X(0)

induces a morphism
S′(1) −→ S(1)

and we may form a pullback opetopic set of X1 along this morphism; we
set this to be X ′1, the underlying Q′

X′(0)
+-opetopic set of X ′.

Proposition 5.1.7. (see [BD2], Proposition 45) If X is n-coherent then
X ′ is n-coherent.

Proof. It is easy to check that a cell in X ′ is universal if and only if
the corresponding cell in X is universal, and that a factorisation in X ′ is
universal if and only if the corresponding factorisation in X is universal.

�

Proof of Proposition 5.1.6. Let α be an m-frame in X with m ≤ n,
so α ∈ S(m). Now X determines an (n −m)-coherent Q(m)-algebra, and
we have a morphism

o(I) = 1
α
−→ S(m)

so we may form a pullback I-opetopic set along this morphism.
By Proposition 5.1.7 this is (n − m)-coherent, i.e. it is an opetopic

(n−m)-category. �

Examples 5.1.8.

1) In an n-category X, every 1-frame determines an (n− 1)-category.

A 1-frame in X is given by

a b
? - .

We denote the induced (n − 1)-category by Hom(a, b) or X(a, b); its
cells are of the form shown below.

0-cells -a b
f

1-cells a b

f

g

⇓ α
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2-cells (k-ary) αk

...

α1

≡〉
θ

α

...

2) Given a 2-frame

a

b

d

c⇓

say, we have an (n − 2)-category whose cells are of the form shown
below.

0-cells
a

b

d

c⇓ α

1-cells
a

b

d

c⇓ α a

b

d

c⇓ β≡〉
θ

2-cells (k-ary)

α0 α1 α2≡〉
θ1

≡〉
θ2

≡〉
θ3
. . . ≡〉

θk
αk

φ

α0 ≡〉
θ

αk

...

3) Given an (n−1)-frame we have a 1-category whose objects are (n−1)-
cells and arrows are 1-ary n-cells.

5.2 The theory of bicategories

Any proposed definition of n-category should at least be in some way equiv-
alent to the classical definitions as far as the latter are understood. In [BD2]
Baez and Dolan examine the case n = 1 but do not explain how their def-
inition is equivalent to the classical definition of bicategories in the case
n = 2. This is perhaps because, without the modifications described in this
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thesis, such an equivalence does not arise. In this section we establish an
equivalence between the (modified) opetopic and the classical approaches to
bicategories. We begin with some examples to help clarify and motivate the
later arguments; our general aim is to shed some light on the inescapable
loops in the definition of universality, as well as to compare the resulting
structures with the classical ones. We conclude with an informal discussion
on the subject of strictness.

Note that for n ≤ 1 the difference between our definition and the orig-
inal Baez-Dolan definition is not yet apparent. The result for n = 1 is
described in [BD2] (Example 42); we include it here (with more detail) for
completeness.

5.2.1 Opetopic 0-categories

An opetopic 0-category X is determined, up to isomorphism, by the set
X(0). For, given any 0-cell a ∈ A, the following nullary 2-niche

-

.

⇓
a a

must have a unique occupant, and so the unique occupant of the following
1-niche

a ?
? -

must have a as its target, and we can call the 1-cell 1a, giving

X(1) ∼= {a −→ a : a ∈ A}.

Proposition 5.2.1. There is an equivalence

Opic-0-Cat
∼
−→ Set

surjective in the direction shown.

Proof. We construct such a functor, ζ. Let X be an opetopic 0-category.
We put

ζ(X) = X(0).

A morphism f : X −→ Y of opetopic 0-categories is uniquely specified by
the function f0 : X(0) −→ Y (0) so we put

ζ(f) = f0.

Conversely, given a set A, we have an opetopic 0-category X such that
ζ(X) = A; X is defined by

X(0) = A

X(1) = {a
1a−→ a : a ∈ A}.

So ζ is surjective, and it is clearly full and faithful, giving an equivalence
as required. �
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5.2.2 Opetopic 1-categories

We first clarify our notation. We draw

• 1-cells as arrows -

• 2-cells as
⇓

• 3-cells as
≡〉

. . .

These represent isomorphism classes of objects in the appropriate symmet-
ric multicategory. We give below some typical examples of openings, niches,
frames and cells.

1-opening -

1-niche a ?
? -

1-frame a b
? -

1-cell a b
f

-

3-ary nullary

2-opening a1

a2 a3

a4

⇓
-

.

⇓
a a

2-niche a1

a2 a3

a4

f1

f2

f3

?

⇓ ?
-

.

⇓
a a

?

?
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2-frame a1

a2 a3

a4

f1

f2

f3

g

⇓ ?
-

.

⇓
a a

g

?

2-cell a1

a2 a3

a4

f1

f2

f3

g

⇓ α
-

.

⇓
a a

g

α

Where confusion is unlikely, we may omit some lower-dimensional labels
once the higher-dimensional ones are in place, as in the following examples.

3-opening
≡〉f1

f2 f3

f4

f5

f6

f7

f8
f9

f
- ≡〉

f

f

⇓

3-niche
≡〉
?

α3 α2

α1

? f
- ≡〉

? f

f

⇓?

3-frame
≡〉
?

α3 α2

α1

β f
- ≡〉

? f

f

⇓α

3-cell
≡〉
θ

α3 α2

α1

β f
- ≡〉

θ f

f

⇓α

We begin by constructing a functor

ζ : Opic-1-Cat −→ Cat;

we will eventually show that this functor is an equivalence.

• On objects

Given an opetopic 1-category X we define a category C = CX as follows.
First set ob C = X(0). Then, given objects a, b ∈ X(0), let C(a, b) be the
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preimage of a
?
−→ b under f1. (Recall that we have a 0-category Hom(a, b),

that is, a set.)

Composition and identities in C are defined according to the 2-cells in

X as follows. For composition consider 1-cells a
f
−→ b, b

g
−→ c. We have

the following 2-niche

f g

?

⇓?

which has a unique occupant; we write it as

f g

gf

⇓u

.

For identities we have already observed (Examples 5.1.3) that in an opetopic
n-category the universal 1-ary (n + 1)-cells are of the form a −→ a. Ex-
plicitly, for n = 1 we have for any a ∈ X(0) a nullary 2-niche

-

.

⇓
a a

?

?

which must have a unique occupant. So we write it as

-

.

⇓
a a

1a

u

and check that this does indeed act as the identity with respect to the
composition defined above. We seek the unique occupant of the niche

1a f

?

⇓?

,

that is

1a f

f.1a

⇓u

.

Certainly we have the following 3-niche
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1a f

f.1a

u

|

.
u

≡〉
? f

f.1a

⇓ ?

with a unique occupant. So by Example 5.1.3(1), we have f.1a = f as
required. Similarly 1a.f = f .

It remains to check that associativity holds. Given 1-cells

a
f
−→ b

g
−→ c

h
−→ d

we have the following universal 3-cells

f

g

h

(hg)f

hg ≡〉 f

g

h

(hg)f

u1

f

g

h

h(gf)

gf ≡〉 f

g

h

h(gf)

u2

But u1 and u2 are occupants of the same 2-niche; by uniqueness they must
be the same, giving

(hg)f = h(gf)

as required. So we have defined a category, and we set

ζ(X) = CX .

Observe that we find composites and identities by considering universal
2-cells, and we check axioms by considering universal 3-cells.

• On morphisms

Given a morphism of opetopic 1-categories F : X −→ Y we seek to
define a functor F : CX −→ CY . We define the action of F on objects and
arrows by the functions

F0 : X(0) −→ Y (0)

and F1 : X(1) −→ Y (1).

We check functoriality. By definition of morphisms of opetopic 1-categories,
the following diagram commutes
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Y (1)

X(1) o(IX(0)
+) = o(Q(1))

o(IY (0)
+) = o(R(1))

-

-
? ?

F1

giving

F (dom f) = dom (Ff)

and F (cod f) = cod (Ff).

Now the function

F2 : X(2) −→ Y (2)

makes the following diagram commute

Y (2)

X(2) o(Q(1)X(1)
+)

o(R(1)Y (1)
+)

-

-
? ?

F2

so under the action of F2 the following (universal) 2-cell in X

f g

gf

⇓u

gives the following 2-cell in Y

Ff Fg

F (gf)

Fu

and so we have F (g ◦ f) = Fg ◦ Ff by uniqueness of 2-niche occupants.
Similarly consider the following nullary 2-cell in X

-

.

⇓
a a

1a

u

.

Under the action of F2 we have the following 2-cell in Y
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-

.

⇓

Fa Fa
F (1a)

Fu

and so we have F (1a) = 1Fa by uniqueness of 2-niche occupants.

So F is a functor as required. Observe that in the above construction
we do not need to stipulate that universality be preserved.

Finally, before showing that ζ is an equivalence, we characterise univer-
sal 1-cells as invertibles.

Proposition 5.2.2. A 1-cell f in X is universal if and only if it is invert-
ible as an arrow of CX .

Proof 1 (bare hands). Let a
f
−→ b be a universal 1-cell in X. We

certainly have a 1-cell

a a
1a - .

So by clause (1) of the definition of universal 1-cell we have a factorisation,
that is a 1-cell

b a
g

-

and a universal 2-cell

a

b

a

f g

1a

⇓

so we have gf = 1a.

Now consider the 1-cell

a b
f

- .

Similarly, we have a universal 2-cell

a

b

b

f 1b

f

⇓u

.

Now by clause (1) of the definition of universal 2-cell, if we have a 2-cell
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f h

f

⇓

then we have a factorisation, so we certainly have a 2-cell

h

1b

⇓

By uniqueness of 2-niche occupants, this gives

hf = f ⇒ h = 1b.

Now consider the following 3-cell

f

g

f

f

1 ≡〉 f

g

f

f

giving f(gf) = f . But by associativity we have

f(gf) = (fg)f = f

so we have fg = 1b. So if f is universal in X then f is invertible in CX .

Conversely, suppose f is invertible in CX , so we have in X 2-cells

a

b

a

f g

1

⇓

, b

a

b

g f

1

⇓

.

We now show that f is universal:

i) Given any 0-cell b′ ∈ X(0) and 1-cell a
h
−→ b′ we have the following

3-cell

f

g

h

h

1 ≡〉 f

g

h

h
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so by associativity the following universal 2-cell

f hg

h

⇓

giving a factorisation for h as required.

ii) We show that any such factorisation is universal. Let

f s

h

⇓

be such a factorisation. Then given any other 2-cell

f s′

h

⇓

we need to exhibit a factorisation

f
s

h

s′

≡〉 f s′

h .

Now

h = sf ⇒ hg = sfg = s

so we have s′ = hg = s and 3-cell

f
s

h

s′

≡〉 f s′

h

as required. Any such factorisation is then trivially universal.
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So if f is invertible then f is universal, and the proposition is proved. �

Although the above calculations may help in understanding the def-
initions, the proposition may be proved more quickly using the Yoneda
Lemma as follows.

Proof 2 (Yoneda). f is universal in X if and only if

1) Given any arrow b
g
−→ c there is an arrow b

ḡ
−→ c such that ḡf = g

and

2) h1f = h2f ⇒ h1 = h2

i.e. for all c ∈ ob C the function

f∗ : C(b, c) −→ C(a, c)
h 7−→ h ◦ f

is an isomorphism. But this is true if and only if f is isomorphism since
the Yoneda embedding is full and faithful. �

In Chapter 6 we propose a characterisation of universality that gener-
alises the above Yoneda result.

Proposition 5.2.3. The functor ζ exhibits an equivalence of categories

Opic-1-Cat
∼
−→ Cat

surjective in the direction shown.

Proof. We have defined a functor

ζ : Opic-1-Cat −→ Cat

above, and it is clearly full and faithful; we show that it is surjective.
Given any (small) category C, we may construct an opetopic 1-category

X with X(0) = ob C and X(1) = arr C. We see immediately that every

1-niche has a universal occupant a
1a−→ a. The set X(2) is defined as follows.

Every nullary 2-niche

-

.

⇓
a a

?

?

has a unique occupant

-

.

⇓
a a

1a
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and every m-ary 2-niche

f1

f2

fm

?

⇓?

has a unique occupant

f1

f2

fm

fm ◦ fm−1 ◦ . . . ◦ f1

⇓

.

Furthermore, since a 1-cell is universal if and only if it is invertible as an
arrow of C, composites of universals are universal.

So X is 1-coherent, and clearly ζ(X) = C. �

5.2.3 n-cells in an n-category

The definition of universality works from the top down: universal cells are
understood via cells in the dimension above, and the starting point is that
all cells in dimensions higher than (n + 1) are trivial. So in effect, n-cells
result from the ‘first’ step of the induction; we now make some general
observations about n-cells, which will be useful later.

Recall (Example 5.1.8(3)) that every (n−1)-frame determines an opetopic
1-category. So we have an opetopic 1-category of (n − 1)-cells and 1-ary
n-cells, or, by Proposition 5.2.3, a category.

Let X be an opetopic n-category. First recall that composites of n-
cells in X are uniquely determined, since occupants of (n + 1)-niches are
unique. Also, composition of n-cells is strictly associative and a morphism
of opetopic n-categories must be strictly functorial on n-cell composites.
(In fact, we have a symmetric multicategory of (n− 1)-cells and n-cells.)

Now consider an n-niche α in X. Then, given any universal occupant
u, every occupant f of α factors uniquely as

f = g ◦ u

where g is a 1-ary n-cell. So, for any such universal, we may express the
set of occupants of α as

g ◦ u such that g ∈ X(n)1 and s(g) = t(u)

where X(n)1 is the set of 1-ary n-cells. Given any other universal occupant
u′, we then have

u′ = x ◦ u
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for some (unique) universal x. So we have

{g′ ◦ u′} = {g ◦ u}

since g′ ◦ u′ = g′ ◦ (x ◦ u) = (g′ ◦ x) ◦ u.

More generally, given any non-empty set U of universal occupants of α,
the set of occupants of α may be expressed as

{g ◦ u : u ∈ U, g ∈ X(n)1, s(g) = t(u)}
/

∼
.

Here ∼ is the equivalence relation generated by

1) g ◦ u ∼ g′ ◦ u′ ⇐⇒ g = g′ ◦ xuu′

2) 1 ◦ u ∼ u

where for any u, u′ ∈ U , xuu′ is the unique universal such that

u′ = xuu′ ◦ u.

5.2.4 Equivalence between approaches to bicategories

We are now ready to turn our attention to the case n = 2. We show how to
construct a classical bicategory from an opetopic 2-category, leading to the
main theorem of this chapter, which shows how the opetopic and classical
theories of bicategories are equivalent.

An important difference between this construction and that for the case
n = 1 is that an element of choice now arises. The universality condition
stipulates that every niche should have a universal occupant, but does not
specify such universals. This approach differs from the approach of Leinster
([Lei5]), for example, in which contractibility is defined as a property but
specific contractions are then given.

This approach also differs from the classical approach to bicategories,
in which binary and nullary composites of 1-cells are specified, even though
m-fold composites are not, for m > 2. (Note that 1-cell identities are con-
sidered as ‘nullary composites’.) Leinster refers to this theory as being
‘biased’ towards binary composites; in [Lei2], he introduces the notion of
unbiased bicategory. The theory of bicategories is made ‘unbiased’ by spec-
ifying m-fold composites for all m. This theory turns out to be equivalent
to the classical one ([Lei5]). Leinster also comments that, provided at least
one choice has been made for each of k = 0 and some k ≥ 2, an equivalent
theory of bicategories may be formed.

Another way of eliminating bias from a bicategory might be to choose
no specified composites. We will later see that this is how the opetopic
approach may be interpreted. Once we have shown that this theory is
equivalent to the classical one, it is easy to see which choices give rise to a
theory of bicategories, and it follows immediately that all such theories are
equivalent.
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Theorem 5.2.4. Write Bicat for the category of bicategories and mor-
phisms (lax functors). Then

Opic-2-Cat ≃ Bicat.

Given an opetopic 2-category X, we seek to construct a bicategory B
(using the definition given in [Lei1]). To do this we need to make some
choices of universal 2-cells. The general idea is

• the 0-cells of B are the 0-cells of X

• the 1-cells of B are the 1-cells of X

• the 2-cells of B are the 1-ary 2-cells of X.

We then choose a universal occupant for each 0-ary and 2-ary 2-niche in
X. Then

• 1-cell composition in B is given by the chosen 2-ary universal 2-cells
in X

• 1-cell identities in B are given by the chosen nullary universal 2-cells
in X

• constraints are induced from composites of the chosen universals

• axioms are seen to hold by examining 4-cells.

In fact, we define a category of ‘biased opetopic 2-categories’ in which these
choices have already been made.

Definitions 5.2.5.

• A biased opetopic 2-category is an opetopic 2-category together with
a chosen universal occupant for every nullary and 2-ary 2-niche.

• A morphism of biased opetopic 2-categories is simply a morphism of
the underlying 2-categories.

We write Opic-2-Catb for the category of biased opetopic 2-categories and
morphisms.

Note that the choice of universal 2-cells is free, that is, the chosen
cells are not required to satisfy any axioms. Furthermore, no preservation
condition is imposed on the morphisms in this category.

Proposition 5.2.6. There is an equivalence

Opic-2-Catb
∼
−→ Opic-2-Cat

surjective in the direction shown.

Proof. Clear from the definitions. �

So in fact, we prove the following proposition:
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Proposition 5.2.7. There is an equivalence

Opic-2-Catb
∼
−→ Bicat

surjective in the direction shown.

Finally we will make some comments about the choices made in forming a
biased opetopic 2-category.

For the longer calculations in this section, and for an explanation of the
‘shorthand’ used in manipulating 2-cells, we refer the reader to Appendix
C.

Proof of Proposition 5.2.7. We construct a functor

ζ : Opic-2-Catb −→ Bicat

and show that it is surjective, full and faithful.

• We define the action of ζ on objects.

Let X be a biased opetopic 2-category. So in addition to the usual data,
we have

i) for each object A ∈ X(0) a chosen universal 2-cell

-

.

⇓

A A

ιA

ii) for each pair f, g of composable 1-cells, a chosen universal 2-cell

f g
cgf

.

We may indicate these chosen 2-cells by ∼ as in

-

.

⇓

A A
∼

,

f g
∼

.

We now define a bicategory B = BX as follows. First set

ob(B) = X(0).
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Recall (Proposition 5.1.6) that given objects A,B ∈ X(0), we have an
opetopic 1-category Hom(A,B). Let B(A,B) be the category corresponding
to Hom(A,B) according to Proposition 5.2.3. So we have 1-cells given by
1-cells of X

a
f
−→ b

and 2-cells given by 1-ary 2-cells of X

f

g

⇓ α
.

2-cell composites are given by the (unique) 3-cell occupants, for example

α
β

≡〉 β ◦ α

and 2-cell identities by nullary 3-cells

f
- ≡〉

f

f

⇓1f

.

Now for any objects A,B,C ∈ ob B we need a functor

cABC : B(B,C)× B(A,B) −→ B(A,C)
(g, f) 7−→ g ◦ f = gf
(β, α) 7−→ β ∗ α.

We define g ◦ f to be the target 1-cell of the chosen universal cgf , so we
have

f g

g ◦ f

cgf

.

Note that for each composable pair f, g, we have specified a 2-cell cgf ; this
is crucially stronger than merely specifying a 1-cell g ◦ f .

We now show how horizontal 2-cell composition is induced. Consider
2-cells

f1

f2

⇓ α
,

g1

g2

⇓ β
;

we seek a 2-cell
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g1.f1

g2.f2

β ∗ α
.

We have a 3-cell

g2

g2f2

∼ β
g1

f2

α
f1

≡〉 f1 g1

g1.f1

φ

unique in its niche, and a universal 2-cell

f1 g1

g1.f1

∼

inducing, by definition of universality, a 2-cell

g1.f1

g2.f2

⇓ θ

unique such that there is a 3-cell

∼

θ
≡〉 φ

.

Put β ∗ α = θ. We check functoriality, that is

i) 1g ∗ 1f = 1gf

ii) (β2 ◦ β1) ∗ (α2 ◦ α1) = (β2 ∗ α2) ◦ (β1 ∗ α1) (middle 4 interchange)

(see Appendix, Lemma C.2.1).

Next we need, for each object A, a 1-cell A
IA−→ A. We define this to be

the target of the chosen universal ιA, so we have

-

.

⇓

A A
IA

ιA

.
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Note that, as before, we have specified a universal 2-cell, not just the 1-cell
IA.

We now seek natural isomorphisms a, r, l. Each of these is induced
uniquely from the chosen universals ι and c. For a, consider 1-cells

A
f
−→ B

g
−→ C

h
−→ D.

We seek a natural isomorphism

ahgf : (hg)f
∼
−→ h(gf).

We have

f

g

h

(hg)f

hg ≡〉 f

g

h

(hg)f

θ

and

f

g

h

h(gf)

gf ≡〉 f

g

h

h(gf)

φ

.

θ and φ are composites of universals, so universal. Universality of θ induces
a unique 2-cell α such that

θ

α

= φ

so

f

g

hhg

α

=
f

g

h

h(gf)

gf

.

Put ahgf = α. We see from universality of φ that ahgf is an isomorphism;
we check that it satisfies naturality (see Appendix, Lemma C.2.2).

Next we seek a natural transformation r, so we need for any 1-cell

A
f
−→ B a 2-cell

f.IA

f

⇓ r
.
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Now we have a 3-cell

IA f

f.IA

∼

|

.
∼

≡〉 f

f.IA

⇓ α

and the target 2-cell α is universal since it is the composite of universals.
(Note that this is not the same α as above.) So α induces

α
r

≡〉 1f

so

IA f
|

.
∼

∼

rf
=

f

f

⇓ 1f

.

Since α is universal it is an isomorphism with rf as its inverse; so rf is also
an isomorphism. We also check naturality (see Appendix, Lemma C.2.3).
The construction of and result for l follow similarly.

Finally we check the axioms for a bicategory (see Appendix,
Lemma C.2.4). So we have defined a bicategory BX and we put ζ(X) = BX .

• We define the action of ζ on morphisms.

Let F : X −→ X ′ be a morphism of opetopic 2-categories, so for each
k we have

X ′(k)

X(k) S(k)

S′(k)

-

-
? ?

Fk

fk

f ′k
.

We construct from F a lax functor

(F, φ) : BX −→ BX′ .

The action of F on objects is given by the function

F0 : X(0) −→ X ′(0);

we also need, for any objects A,B ∈ ob BX a functor

FAB : BX(A,B) −→ BX′(FA,FB).
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Now for any A,B ∈ ob BX we have an opetopic 1-category Hom(A,B),
and restricting F to this gives a morphism of opetopic 1-categories

Hom(A,B) −→ Hom(FA,FB)

so by Proposition 5.2.3 we have a functor FAB as required.

Next we seek a natural transformation φABC , so for any 1-cells

A
f
−→ B

g
−→ C

we need a 2-cell

φgf : Fg ◦ Ff −→ F (g ◦ f).

We have in X a chosen universal 2-cell

f g

gf

c

so under the action of F we have in X ′ a 2-cell

Ff Fg

F (gf)

Fc

.

But in X ′ we have a chosen universal 2-cell

Ff Fg

Fg.Ff

∼

which, by definition of universality, induces a 2-cell

Fg.Ff

F (g.f)

φgf

unique such that

Ff Fg

φgf
=

Ff Fg

F (g.f)

Fc

;
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we check that this satisfies naturality (see Appendix, Lemma C.2.5).
We now seek a natural transformation φA for each object A, so we seek

a 2-cell

IFA

FIA

⇓ φA

.

We have in X a chosen universal 2-cell

-

.

⇓

A A
IA

ιA

so applying F gives a 2-cell in X ′

-

.

⇓

FA FA
FIA

FιA

.

Now the chosen universal in X ′

-

.

⇓

FA FA
IFA

ιFA

induces, by universality, a 2-cell

IFA

FIA

φA

unique such that

IFA

FIA

φA

.

⇓

= -

.

⇓

FIA

FιA

and there is no non-trivial naturality to check.
Finally we check that the axioms for a lax functor hold (see Appendix,

Lemma C.2.6). So (F, φ) is indeed a lax functor, and we set ζ(F ) = (F, φ).

It is clear that the above construction of ζ is functorial, so we have
defined a functor

ζ : Opic-2-Catb −→ Bicat;

it remains to show that ζ is surjective, full and faithful.



98 Chapter 5. Weak n-categories

• We show that ζ is surjective.

Given a bicategory B, we construct an opetopic 2-category X such that
ζ(X) = B. The idea is

i) The 0-cells of X are the 0-cells of B.

ii) The 1-cells of X are the 1-cells of B.

iii) The 1-ary 2-cells of X are the 2-cells of B.

iv) For m 6= 1, certain m-ary universals are fixed according to m-fold
composites in B; the remaining cells are then generated to ensure
that these do indeed satisfy universality.

v) The 3-cells of X are determined from 2-cell composition in B.

PutX(0) = ob(B) and set X(1) to be the set of 1-cells of B; the function

f1 : X(1) −→ S(1) is defined so that the preimage of the frame A
?
−→ B is

the set of objects of the category B(A,B).
We now construct X(2) bearing in mind the comments in Section 5.2.3.

Write X(2)m ⊂ X(2) for the set of m-ary 2-cells. First we define the set
X(2)1 of 1-ary 2-cells to be the set of 2-cells of B.

For 0-ary 2-cells, we first define for each A ∈ X(0) a 2-cell

-

.

⇓

A A
IA

ιA

.

We then define the set of occupants of the same niche to be

{α ◦ ιA : α ∈ X(2)1, s(α) = IA}

that is, cells of the form

-

.

⇓

A A
f

α ◦ ιA = α

.

⇓ ιA

where we put 1 ◦ ι = ι.
Similarly for X(2)2 we first define for each composable pair of 1-cells

f, g a 2-cell

f g

gf

cgf
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where g ◦ f is the composite in B. We then define the set of occupants of
this niche to be

{α ◦ cgf : α ∈ X(2)1, s(α) = g ◦ f}

that is, cells of the form

f gcgf

α

where we put 1 ◦ c = c.

For X(2)m, m > 2, consider a 2-niche of the form

f1

f2

fm

f

⇓?

.

We have no preferred m-fold composite in B; instead, for each composite
γ(f1, . . . , fm) we define a 2-cell uγ which is to be universal:

f1

f2

fm

γ(f1, . . . , fm)

⇓

.

Now, suppose we have composites γ(f1, . . . , fm) and γ′(f1, . . . , fm). Then
we have a unique invertible

aγγ′ : γ(f1, . . . , fm) =⇒ γ′(f1, . . . , fm)

given by composing components of the associativity constraint a. (Unique-
ness follows from coherence for a bicategory.)

We then generate occupants of this niche as

{α ◦ uγ : α ∈ X(2)1, s(α) = γ(f1, . . . , fm)}
/

∼

where ∼ is the equivalence relation generated by

i) α ◦ uγ = β ◦ uγ′ ⇐⇒ β ◦ aγγ′ = α ∈ B

ii) 1 ◦ uγ = uγ .

Note in particular that since 1 ◦ aγγ′ = aγγ′ we have

aγγ′ ◦ uγ = uγ′ .
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So, given any γ, every occupant of the niche is uniquely expressible as α◦uγ ,
with α ∈ X(2)1. This shows that uγ is indeed universal, and completes the
definition of X(2).

Note that the universality of the uγ follows from coherence for classical
bicategories, as it depends on the fact that any two composites of given
1-cells are uniquely isomorphic.

We now constructX(3). We must specify a unique 3-cell for any 3-niche,
that is, a unique composite 2-cell for any formal composite of 2-cells.

1) First, composites of 1-ary 2-cells are determined by 2-cell composition
in B.

2) Next we consider any composite of the form c ◦ ι. We define the
composites by

IA f

f.IA

c

|

.
ι

≡〉
rf
−1

and similarly

f IA

IA.f

c

|

.

≡〉
lf
−1

.

3) Now consider a composite of the form

∼α

where α is any 1-ary 2-cell. We put

∼α ≡〉 ∼

1 ∗ α

and similarly

∼ α ≡〉 ∼

α ∗ 1



5.2 The theory of bicategories 101

4) Now consider a formal composite of chosen 2-ary 2-cells cgf . Such
a diagram uniquely determines a composite γ in B of its boundary
1-cells. So we set the composite 2-cell in X to be uγ . Conversely, any
2-cell uγ thus arises as the composite of some 2-cells c.

5) Finally, since we require that 2-cell composition be strictly associa-
tive, we have determined all 3-cells in X. For, using the above cases,
any nullary, 2-ary or m-ary composite can be written in the form

α

.

⇓

,

∼

α
,

uγ

α

respectively, where α is a composite of 1-ary 2-cells which we can then
compose in B.

This completes the definition of the opetopic set X; it remains to check
that X is 2-coherent. Certainly, every 3-niche has a unique occupant by
construction. A 2-cell α ◦ ι, α ◦ c or α ◦ uγ is universal if and only if α is
universal, that is, if and only if α is invertible in B. So every 2-niche has a
universal occupant and composites of universal 2-cells are universal.

We can check that a 1-cell in X is universal if and only if it is an (inter-
nal) equivalence in B; this follows by an analogous argument to the ‘Yoneda’
proof of Proposition 5.2.2. So every 1-niche has a universal occupant IA,
and composites of universal 1-cells are universal.

So X is a biased opetopic 2-category, with chosen universal 2-cells ι and
c, and it is clear that ζ(X) = B. So ζ is surjective.

• We show that ζ is full.

Let X and X ′ be biased opetopic 2-categories, and suppose we have a
morphism of bicategories

(G,φ) : BX −→ BX′ .

We define a morphism F : X −→ X ′ as follows. For k = 0 and k = 1 the
functions

Fk : X(k) −→ X ′(k)

are given by the action of G on objects and 1-cells respectively. We con-
struct F2 as follows. The action of F2 on 1-ary 2-cells is the action of G
on 2-cells of BX . For 0-ary 2-cells, we observe that any such is expressible
uniquely as
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A A

IA

f

α

.

⇓ ιA

where ιA is the chosen universal forX. Then we define

F2 :
A A

α

.

⇓ ιA

7−→
FA FA

Fα

.

⇓ FιA

= FA FA

IFA

φA

.

⇓ ιFA

Ff

Fα

where ιFA is the appropriate chosen universal for X ′; this assignation is
well-defined by uniqueness.

For m ≥ 2, any m-ary 2-cell is expressible in the form

f1

f2

fmθ

α

.

Here θ is the composite of some configuration of chosen universals c, de-
termining a 1-cell composite γ(f1, . . . , fm) in B, and α : γ =⇒ g. Then we
define

Fm :
(c1, c2, . . .)

α
7−→

(F c1, F c2, . . .)

F α
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= (c1
′, c2

′, . . .)

Φ

F α

where Φ is the appropriate composite of components of the constraint φ.
This assignation is well-defined by uniqueness and the axioms for a mor-
phism of bicategories.

It is clear from the construction that this is a morphism of biased
opetopic 2-categories, and that

ζ(F ) = (G,φ).

So ζ is full.

• We show that ζ is faithful.

Consider morphisms F,F ′ of unbiased opetopic 2-categories, such that
ζ(F ) = ζ(F ′). Write ζ(F ) = (G,φ) and ζ(F ′) = (G′, φ′).

Certainly since G = G′ on objects and 1-cells we have F0 = F ′0 and
F1 = F ′1. Similarly, G = G′ on (bicategorical) 2-cells gives F2 = F ′2 on
(opetopic) 1-ary 2-cells. For m-ary 2-cells with m 6= 1 consider again the
above presentation of 2-cells. Then φ = φ′ gives F2 = F ′2 on all opetopic
2-cells. So ζ is faithful.

So finally we may conclude that ζ exhibits an equivalence

Opic-2-Catb
∼
−→ Bicat

as required. �

Proof of Theorem 5.2.4. By Proposition 5.2.7 we have

Opic-2-Catb
∼
−→ Bicat

and by Proposition 5.2.6 we have

Opic-2-Catb
∼
−→ Opic-2-Cat

so we have an equivalence

Opic-2-Cat ≃ Bicat

as required. �

Remarks 5.2.8.
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1) Note that the final equivalence is not surjective in either direction.
Left-to-right involves a choice of universal 2-cells; right-to-left involves
generating sets of 3-cells and k-ary 2-cells (for k 6= 1) which are
only defined up to isomorphism. Observe that a different choice of
universal 2-cells yields a bicategory non-trivially isomorphic but with
the same cells.

2) The term ‘biased opetopic 2-category’ is used in the spirit of Leinster’s
work on biased and unbiased bicategories ([Lei5]). Rather than pick
universal m-ary 2-cells for just m = 0, 2, we might pick universals for
all m ≥ 0. Again with no further stipulations on morphisms, this
yields an equivalent category of ‘unbiased opetopic 2-categories’. By
a straightforward modification of the above proof, we may see that
this corresponds to the theory of unbiased bicategories; Leinster has
shown directly that the biased and unbiased theories are equivalent.

3) In fact, we may choose any number of universal m-ary 2-cells for
each m and define a category obviously equivalent to Opic-2-Cat,
by making no stipulation on morphisms. We might then ask: when
does this yield a theory of bicategories? In order to modify the above
construction as required, we need enough chosen universals to give
a complete presentation of the 2-cells of X. From the observations
in Section 5.2.3 we see that this is possible provided we have chosen
at least one 0-ary universal, and at least one m-ary universal for
some m > 1 (for each appropriate niche). This idea is discussed in
[Lei5] (Appendix A); in the opetopic setting it is immediate that each
resulting category of ‘bicategories’ is equivalent.

4) Like Leinster, we might observe that the equivalence of categories

Opic-2-Cat ≃ Bicat

is two levels ‘better’ than we might have asked; we have a compar-
ison at the 1-dimensional level without having to invoke 3- or even
2-dimensional structures. So the theory might already be seen as
fruitful despite the lack of an (n+ 1)-category of n-categories.

In summary, we have the following equivalences, surjective in the direc-
tions shown:

Opic-2-Cat
∼
←− Opic-2-Catb

∼
−→ Bicat.

5.2.5 Strictness

In this section we discuss (informally) various possible notions of strictness
in the opetopic setting, and compare these with the classical biased and
unbiased settings.

In the classical theory of bicategories, ‘strictness’ (of bicategories or
their morphisms) is determined by the ‘strictness’ of the constraints; in
general ‘lax’ for plain morphisms, ‘weak’ for isomorphisms and ‘strict’ for
identities.
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In the opetopic theory we cannot make such definitions, since we do
not have those constraints unless we have chosen universal 2-cells. Even
then the constraints are not explicitly given. So we must define strictness
by some other means; we may define stricter and weaker notions in terms
of universals.

We first turn our attention to morphisms. Recall that the original
Baez-Dolan definition demanded that a morphism preserve universality;
this is stronger than the general morphisms we use in our definition of
Opic-2-Cat.

Proposition 5.2.9. Recall (Proposition 5.2.7) that we have an equivalence

ζ : Opic-2-Catb
∼
−→ Bicat.

Let F be a morphism of opetopic 2-categories. Then F preserves universals
iff ζ(F ) is a weak functor (homomorphism) of bicategories.

Proof. Suppose F : X −→ X ′ preserves universals. Then the chosen
universal in X

f g

gf

c

becomes, under the action of F , a universal in X ′

Ff Fg

F (gf)

Fc

inducing

Ff FgFc

φ−1
=

Ff Fg

Fg.Ff

∼

so φABC is an isomorphism.
Conversely suppose φgf and φA are invertible for all f, g,A. First note

that 1-ary universal 2-cells are always preserved (clear from the case n = 1).
Now, any universal can be expressed as

θ

α



106 Chapter 5. Weak n-categories

where θ is some composite of chosen universals and α is universal. Now
applying F we have

Fc, Fc′, . . .

φ, φ′, . . .

Fα

which is universal since Fα is universal.
The result for 1-cells follows (with some effort). �

Definition 5.2.10. We write Opic-2-Cat(weak), Opic-2-Catb(weak)
and Bicat(weak) for the lluf subcategories with only weak morphisms.

Proposition 5.2.11. The equivalences given in the proofs of Proposi-
tions 5.2.6 and 5.2.7 restrict to equivalences

Opic-2-Cat(weak)
∼
←− Opic-2-Catb(weak)

∼
−→ Bicat(weak)

surjective in the directions shown.

Proof. The first equivalence is clear from the definitions and the sec-
ond follows from Proposition 5.2.9. Since these are lluf subcategories the
functors are clearly still surjective. �

Since we have still made no stipulation about the action of morphisms
on chosen universals, it is clear that we will still have a result of the form
‘all theories are equivalent’ (cf [Lei4]). That is, regardless of the number of
universals chosen, the category-with-weak-morphisms will remain equiva-
lent to the category Opic-2-Cat(weak). This ceases to be so in the strict
case.

There is no obvious way of further strengthening the conditions imposed
on morphisms in Opic-2-Cat(weak), but if we consider Opic-2-Catb(weak),
we can further demand that chosen universals be preserved.

Proposition 5.2.12. Let F be a weak morphism of biased opetopic 2-
categories. Then F preserves chosen universals iff ζ(F ) is strict.

Proof. ‘⇒’ is clear from the definition of ζ. Now for any morphism (F, φ)
of opetopic 2-categories we have

-

.

⇓ FιA = φA

.

⇓ ιFA
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and

Fcgf =
cFg.Ff

φgf

so clearly if (F, φ) is strict then F preserves chosen universals. �

Definition 5.2.13. We call a weak morphism of biased opetopic 2-categories
strict if it preserves chosen universal 2-cells.

Write Opic-2-Catb(str) and Bicat(str) for the lluf subcategories with
only strict morphisms.

Proposition 5.2.14. The previously defined equivalence restricts to an
equivalence

Opic-2-Catb(str)
∼
−→ Bicat(str)

surjective in the direction shown.

Proof. Follows immediately from Proposition 5.2.12 �

We now consider the possibility of altering the structures of the 2-
categories themselves. Considering the structures used so far as ‘weak’,
we might try to find either lax or strict opetopic n-categories.

In the lax direction we might consider removing the condition that
universals compose to universals. Observe that in the case n = 1 we do not
use this condition to prove

Opic-1-Cat ≃ Cat

so a ‘lax opetopic 1-category’ would be just the same as a weak one, as we
would hope.

However, for n = 2 it is not clear that this ‘laxification’ produces a
useful structure for the general or biased theories. Consider instead the
case in which m-ary universal 2-cells have been chosen for every m ≥ 0.
That is, we define an ‘unbiased opetopic 2-category’ to be one in which
every 2-niche has a chosen universal occupant.

If we now remove the condition that composites of universals be univer-
sals, we have certain 2-cell ‘constraints’ induced by the chosen universals.
For example we have

f

g

h

(hg)f

∼
∼ =

f

g

h∼

γ
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and thus an induced 2-cell

γ : hgf ⇒ (hg)f.

This produces a structure something like a ‘lax unbiased bicategory’ in the
sense of Leinster ([Lei5]) except that the constraints γ are acting in the
opposite direction.

For strictness there is likewise no obvious way of imposing stronger
conditions on an opetopic 2-category. Once we have chosen universals, we
might demand that the chosen universals compose to chosen universals, but
this will certainly not be possible unless we have chosen m-ary universals
for all m ≥ 0. So once again we find ourselves in the unbiased theory.

If we have one chosen universal for each 2-niche, the above condition
forces strict associativity and left and right unit action. So we have a 2-
category; this is to be expected since Leinster has already observed that
unbiased 2-categories are in one-to-one correspondence with 2-categories.
(There is a possibility of more interesting structure if a niche has more than
one chosen universal.)

From this informal discussion we see that the theory of opetopic 2-categories
neither laxifies nor strictifies particularly naturally. In the lax direction,
this is perhaps consistent with the fact that there is no very satisfactory lax
version of classical bicategories. In the strict direction, this demonstrates
why we have found it hard to state a coherence theorem of the form ‘every
bicategory is biequivalent to a 2-category’; we simply do not know what a
‘strict opetopic 2-category’ is. (Note however that statements of the form
‘all diagrams commute’ are much less problematic.)

We have already observed that there are (at least) two possible ways
of removing the bias in a bicategory: we may choose m-ary composites
for no m, or all m. It appears that, although the former philosophy may
be viewed as being more egalitarian towards all universal cells, the latter
provides more footholds for exploring the theory.



Chapter 6

An alternative notion of

universality

In this chapter we discuss an alternative characterisation of universal cells in
opetopic n-categories. While the theory of opetopes and opetopic sets deals
with the underlying data for k-cells in the opetopic theory of n-categories, it
is universality that deals with composition and coherence. However, there
are many possible ways of characterising universal cells, just as there are
many ways of characterising, say, isomorphisms in a category. We now
propose an alternative characterisation to the one given in Section 5.1.1.

Terminology and Notation

In this chapter we will avoid any detailed discussion of the language of mul-
ticategories and construction of opetopic sets since this has been discussed
in the previous chapters of this work. We will adopt the (more practical)
method of Hermida, Makkai and Power ([HMP1]), picking one ordering
of source elements in order to represent a symmetry class. For a general
k-cell we write its source as a, say, to indicate a formal composite whose
constituent (k − 1)-cells may be placed in some order.

Furthermore, we may adopt the following convention for 2-ary cells. A
2-ary k-cell α has the form

· · ·

f

· · ·

g

. . .

α
−→

· · ·

h

where f , g, and h are (k − 1)-cells (and necessarily k ≥ 2). We write this
k-cell as

α : (f, g) −→ h
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employing this ordering of the source elements to indicate that f and g are
pasted at the target of g; we also write s1(α) = f and s2(α) = g.

6.1 Preliminaries

We begin by examining the motivating example in categories. Let C be
a category and f : A −→ B a morphism in C. Then we have a natural
transformation

Hf : C(B, ) −→ C(A, )

with components
◦ f : C(B,C) −→ C(A,C)

for each C ∈ C. Then

f is an isomorphism ⇐⇒ Hf is an isomorphism
⇐⇒ ∀ C ∈ C, ◦ f is an isomorphism
⇐⇒ “composition with f is an isomorphism”

Here “composition with f” is a function on homsets.
Now let X be an opetopic n-category and f : a −→ b a k-cell in X.

Then given any (k−1)-cell c we have (n−k)-categories X(b, c) and X(a, c)
whose 0-cells are k-cells of X with the appropriate source and target, and
whose j-cells are (k + j)-cells.

Since composition in an opetopic n-category is not uniquely defined,
we cannot expect ◦ f to be a well-defined operation X(b, c) −→ X(a, c).
Instead, we will have a span of (n− k)-categories

X(b, c)

Cf

X(a, c)

	 R

σf τf

where Cf gives all possible ways of composing with f . Here σf and τf
are (n− k)-functors i.e. morphisms of the underlying opetopic sets. (σ has
more properties that we will not discuss here.)

We then have the following definition.

Definition 6.1.1. A k-cell f is universal iff

1) k > n and f is unique in its niche, or

2) k ≤ n and τf is an (n− k)-equivalence of (n− k)-categories.

Definition 6.1.2. An m-functor is an m-equivalence of m-categories iff

1) it is an (m− 1)-equivalence on hom-(m− 1)-categories

2) it is “essentially surjective on 0-cells” i.e. surjective up to universal
1-cells
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We observe (without giving details) that since σf will be an (n − k)-
equivalence of (n − k)-categories, the above condition for universality will
also result in X(b, c) and X(a, c) being (n− k)-equivalent.

Furthermore it will follow from the construction of the composition span
that in an n-category the above definition is equivalent to demanding “on
the nose” surjectivity. i.e. f is universal iff ∀x, y ∈ Cf

τ : Cf (x, y) −→ X(τx, τy)

is surjective on objects. This is a consequence of the fact that composites
of universals are universal in an opetopic n-category.

In the next section we construct the composition span itself.

6.2 Construction of composition span

In this section we give the construction of a composition span; in the next
section we give some explicit examples at low dimensions.

Composition of k-cells is given by universal (k + 1)-cells, so in order to
construct a composition span for a k-cell f , we must assume that for all
m > k the universal m-cells have been defined.

We seek to construct a span of opetopic sets

X(b, c)

Cf

X(a, c).

	 R

σf τf

For convenience we write Cf = C, σf = σ and τf = τ . Also put X(b, c) =
X1 and X(a, c) = X2. Recall that a morphism F : A −→ B of opetopic
sets has for each j ≥ 0 a function

Fj : A(j) −→ B(j)

such that, for each j ≥ 1 a certain square

.

A(j) B(j)

.

-

-
? ?

Fj

commutes, ensuring that “underlying shapes are preserved”. So we seek
for each j ≥ 0 functions
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X1(j)

C(j)

X2(j)

	 R

σj τj

such that for each j ≥ 1 a certain diagram

X1(j)

C(j)

X2(j)

	 R

?

?

?

pj

.

.

.
	 R

commutes. Then a j-cell θ ∈ C(j) exhibits τj(θ) ∈ X2(j) as a composite of
f with σj(θ) ∈ X1(j). pj gives the frame of each j-cell in C.

• j = 0

Put
C(0) = {u ∈ U(k + 1) | s2(u) = f}

where U(m) is the set of 2-ary universal m-cells. Put σ0 = s1 and τ0 = t.

• j = 1

A 1-frame in C has the form u1 −→ u2. We form the set of occupants
of this frame as follows. Write

U1 = {u ∈ U(k + 2) | s1(u) = u2}
U2 = {u ∈ U(k + 2) | s2(u) = u1}

and form the pullback

.

	 R

X1(1)

U1

.
	 R

s2 t

U2

X2(1)

	 R

t s1

.
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• j > 1

For higher values of j we construct for each j a pullback over 2j subsets
of U(k + j + 1) as follows.

Let θ be a (j − 1)-frame in C with target α. α is a (j − 1)-cell of C
so is a string of 2j−1 universal (k + j)-cells u1, . . . , uj−1, say. Now write
U = U(k + j + 1) and for each 1 ≤ i ≤ 2j−1

Ui = {u ∈ U(k + j + 1) | s1(u) = ui} .

For the set of occupants of the frame θ we form a pullback over 2j sets as
follows:

	 R	 R	 R	 R	 R	 R	 R	 R	 R	 R 	 R

U1 U U U2 U3 U U U4 U5 U . . . U2j−1

s2 t t s1 s1 t t s2 s2 t t s1 s1 t t s2 s2 t t s1 t s2

.

This completes the definition of Cf .

6.3 Some examples at low dimensions

In this section we give some examples of elements of the composition span
C = Cf for a 1-cell f .

• j = 0

C(0) is the set of universal 2-cells of the form

f g

ḡ

⇓

exhibiting ḡ as a composite of f and g.

• j = 1

We form a pullback over

X1(1)

U1

.
	 R

s2 t

U2

X2(1)

	 R

t s1

.



114 Chapter 6. An alternative notion of universality

So a typical element is of the form (u31, u32) with projections as shown
below

φ

u31

φ1

	 R

s2 t

u32

φ̄

	 R

t s1

.

For example, the following two universal 3-cells exhibit φ̄ as a composite
of f with φ; this element of C(2) is in the frame u2 −→ u′2.

≡〉f
φ̄

u32

≡〉f φ

u31

‖

φ1

φ1

u2

u′2

• j = 2

We form a pullback over

X1(2)

U1

.
	 R

s2 t

U

.
	 R

t s1

U

.
	 R

s1 t

U2

X2(2)

	 R

t s2

.

A typical element is of the form (u41, u42, u43, u44) with projections as
shown below
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φ

u41

φ1

	 R

s2 t

u42

φ2

	 R

t s1

u43

φ3

	 R

s1 t

u44

φ̄

	 R

t s2

exhibiting φ̄ as a composite of f with φ. For example, the following element
of C(2) is in a frame with target (u31, u32).

≡〉 ≡〉

≡〉

∆

φ

u41 φ1

u31

≡〉 ≡〉

≡〉

∆

φ2

u42 φ1

≡〉 ≡〉

≡〉

∆

φ2

u43 φ3

≡〉 ≡〉

≡〉

∆

φ̄

u44 φ3u32

• j = 3

Similarly, in C(3) we have a typical element (u51, . . . , u58)

φ

u51

φ1

	 R
s2 t

u52

φ2

	 R
t s1

u53

φ3

	 R
s1 t

u54

φ4

	 R
t s2

u55

φ5

	 R
s2 t

u56

φ6

	 R
t s1

u57

φ7

	 R
s1 t

u58

φ̄
	 R
t s2

.
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For example the following element of C(3) (running over two pages) has
target (u41, u42, u43, u44):

≡〉 ≡〉

≡〉

∆

≡〉

≡〉

≡〉
∆
∇

≡〉

≡〉

≡〉 ≡〉

≡〉

≡〉

≡〉
∆
∇

≡〉

∆∇

φ

u41

u51

φ1

φ2

u52

≡〉 ≡〉

≡〉

∆

≡〉 ≡〉

≡〉 ≡〉

≡〉

∆

≡〉

∆

φ4

u42

u54

φ3

φ2

u53
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≡〉 ≡〉

≡〉

∆

≡〉 ≡〉

≡〉 ≡〉

≡〉

∆

≡〉

∆

φ4

u43

u55

φ5

φ6

u56

≡〉 ≡〉

≡〉

∆

≡〉

≡〉

≡〉
∆
∇

≡〉

≡〉

≡〉 ≡〉

≡〉

≡〉

≡〉
∆
∇

≡〉

∆∆

u44

φ̄

u58

φ7

φ6

u57
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6.4 Conclusions

We conclude that the outline of the basic syntax of opetopes seems secure,
notwithstanding the more abstract notions of symmetric multicategory that
still require further work. However, universality is less well understood,
and we remain unsure of the ideal from in which it should be defined. The
alternative approach described in this chapter seems right in ‘spirit’, but in
the end the mathematics that emerges is not as ‘slick’ as might be hoped.
It is therefore not yet clear what this alternative approach has achieved,
but rather, there is much scope for further work in this area.



Appendix A

Proof of Proposition 2.2.4

We now give the proof of Proposition 2.2.4 deferred from Section 2.2.2.

Proposition 2.2.4. Let Q be a tidy symmetric multicategory. Then

ζ(Q)′ ∼= ζ(Q+)

that is

(EQ
′, TQ

′) ∼= (EQ+, TQ+)

in the category CartMonad.

Proof. First we show that EQ
′ ∼= EQ+. Now EQ+ = Set/SQ+ where

SQ+
∼= o(Q+) = eltQ, and EQ

′ = Set/SQ
′ where

(

SQ
′

↓
SQ

)

= TQ

(

SQ
↓ 1
SQ

)

.

So SQ
′ is equivalent to the pullback

eltQ

· FSQ
op

FSQ
op

-

-
? ?

1

so SQ
′ ≃ eltQ, giving SQ

′ ∼= SQ+. So we have EQ
′ ∼= EQ+ . By abuse of

notation, we write elements of both these categories as sets over S′, since
confusion is unlikely.

Consider (A, f) = (A
f
−→ S′) ∈ EQ

′ ∼= EQ+. Write TQ
′(A, f) = (A1, f1)

and TQ+(A, f) = (A2, f2). We show (A1, f1) ∼= (A2, f2). To construct A2,
first form the pullback
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eltQ+

· FAop

F(eltQ)op
FS′ op

-

- -
? ?

Ff op

s ∼ .

Then A2 ≃ eltQ+ ×FS′op FAop, and f2 is given by the composite

A2 ≃ eltQ+ ×FS′op FAop −→ eltQ+
tQ+

−→ eltQ
∼
−→ S′

where tQ+ is the target map of Q+.

Informally, since we are here considering S′ ≃ o(Q+) = elt(Q), the

object (A
f
−→ S′) may be thought of as a set of labels for arrows of Q.

Then A2 is the set of all possible source-labelled arrows of Q+. Since an
arrow of Q+ is given by a tree with nodes corresponding to arrows of Q,
an element of A2 may be thought of as such a tree, with nodes labelled
by compatible elements of A. Alternatively, it may be thought of as a
configuration for composing labelled arrows of Q via object-isomorphisms,
where composition is according to the underlying arrows only. f2 acts by
composing the underlying arrows of Q and then taking isomorphism classes.

We now turn our attention to the action of TQ
′. (For full details of the

free multicategory construction we refer the reader to [Lei3].) For conve-
nience we write TQ = T and SQ = S, so we need to form

(T,Set/S)′ = (T ′, S′).

To construct A1, we form the free multicategory on the following graph:

T

(

S
↓1
S

)

(

A
↓
S

)

(

S
↓1
S

)

� ^

f !

.

Recall we have

T

(

S
↓
S

)

=

(

S′
↓
S

)

and the map A −→ S is the composite A
f
−→ S′ −→ S. The graph

underlying the free operad is then
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T

(

S
↓
S

)

(

A1
↓
S

)

(

S
↓
S

)

� ^

f ′

.

The construction gives a sequence of graphs

T

(

S
↓1
S

)

(

C(k)

↓
S

)

(

S
↓1
S

)

� ^

dk ck

where C(0) = S, d0 = ηT and
(

C(k+1)

↓
S

)

=

(

S
↓1
S

)

+

(

A
↓
S

)

◦

(

C(k)

↓
S

)

.

Here ◦ is composition in the bicategory of spans, so the composite

(

A
↓
S

)

◦

(

C(k)

↓
S

)

is given by the pullback

T

(

C(k)

↓
S

)

·

(

A
↓
S

)

T

(

S
↓
S

)

=

(

S′
↓
S

)

-

-

? ?
f

Tck

and dk+1 is given by the composite

(

A
↓
S

)

◦

(

C(k)

↓
S

)

−→ T

(

C(k)

↓
S

)

Tdk−→ TT

(

S
↓
S

)

µT−→ T

(

S
↓
S

)

.
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This construction gives a nested sequence (C(k), f (k)) ∈ Set/S with
(C(0), f (0)) = (S, 1) and

C(k+1) = S ∐ T (C(k))×S′ A

where (by further abuse of notation) we write

T

(

C(k)

↓
S

)

=

(

T (C(k))
↓
S

)

.

f (k+1) is given by 1 ∐ (T (C(k)) ×S′ A
dk+1
−→ S′ −→ S) and

(

A1
↓
S

)

is then

the colimit of this nested sequence.

Informally, the sets C(k) may be thought of as k-fold formal compos-
ites (or composites of ‘depth’ at most k). The formula for C(k) says that
a composite is either null or is a generating arrow composed with other
composites. We aim to show that these formal composites correspond to
the formal composites given by the source-labelled arrows of Q+.

We show that A1
∼= A2 ≃ eltQ+ ×FS′op FAop as follows. For each k we

exhibit an embedding

gk : C(k)→֒A2

which makes the following diagram commute

S′

C(k) A2
-

R 	
f2dk

gk

.

Then the colimit induces the map required.

We proceed by induction. Define g0 : S −→ eltQ+ ×FS′op FAop as
follows. Let [x] ∈ S denote the isomorphism class of x ∈ o(Q). Given any
[x] ∈ S, we have a nullary arrow αx ∈ Q+(· ; 1x). Recall that an arrow
of Q+ may be regarded as a tree with nodes corresponding to the source
elements (which are themselves arrows of Q) and edges labelled by object-
morphisms of Q. Then αx ∈ Q

+(· ; 1x) is given by a tree with no nodes,
that is, a single edge labelled by 1x as shown below.

?1x

The source of α is empty, so we can define g0 by

g0([x]) = [(αx, ·)]

where (αx, ·) ∈ eltQ+ ×FS′ op FAop, and observe immediately that

x ∼= x′ ∈ o(Q) ⇐⇒ 1x
∼= 1x′ ∈ eltQ.
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Furthermore we have

d0[x] = µT [x] = [1x] = f2g0[x]

as required.
For the induction step, suppose we have constructed gk satisfying the

commuting condition; we seek to construct

gk+1 : C(k+1)→֒A2

satisfying the condition. Consider

y ∈ C(k+1) = S ∐ T (C(k))×S′ A.

If y ∈ S then put gk+1(y) = g0(y). Otherwise, we have

y = (α, a) ∈ T (C(k))×S′ A.

Here the map T (C(k)) −→ S′ is given by Tf (k). Recall that by definition
of T , T (C(k)) is equivalent to the pullback

eltQ

· F(C(k))
op

FS op

-

-
? ?

F(f (k))
op

So, an element of T (C(k)) is an isomorphism class of arrows of Q source-
labelled by compatible elements of C(k). We write the pullback as C

(k).
Then Tf (k) is the map given by the composite

T (C(k))
∼
−→ C

(k) −→ eltQ
∼
−→ S′.

Informally, Tf (k) removes the labels, leaving only the (isomorphism
class of the) underlying arrow of Q.

Now we in fact exhibit a full and faithful functor

C
(k) ×S′ A −→ eltQ+ ×FS′op FAop.

Let ((β, b), a) ∈ C
(k) ×S′ A. So β ∈ eltQ, b = b1, . . . , bn ∈ F(C(k))

op
and

a ∈ A such that [sQ(β)] = (f (k)(b1), . . . , f
(k)(bn)) and f(a) = [β].

Informally, we have an arrow β of Q, source-labelled by the bi ∈ C
(k),

and a compatible label a ∈ A. We seek a formal composite of labelled
arrows, of depth up to k + 1. By induction, we already have for each
element of C(k) a formal composite of labelled arrows, of depth up to k. So
we aim to form a formal composite of these together with β labelled by a.

By induction we have for each 1 ≤ i ≤ n

gk(bi) = (πi, pi) ∈ eltQ+ ×FS′op FAop.
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The commuting condition implies that for each i

[sQ(β)i] = [tQtQ+(πi)].

This gives us a way of constructing a new element of eltQ+ from the data
given, since each πi can be composed with β at the ith place, via the
appropriate object-isomorphism. That is, we form a tree by induction, as
shown in the following diagram

τ1 τ2 τn

β

. . .

where τi is the tree for πi. Each πi has its nodes (that is, source elements)
labelled by elements of A; to complete the definition it remains only to
‘label’ the node corresponding to β. But we have f(a) = [β], that is, a is a
compatible label for β. So we let a be the label for β.

So we have defined a full and faithful functor

C
(k) ×S′ A −→ eltQ+ ×FS′op FAop

inducing, on isomorphism classes, an embedding

gk+1 : C(k) →֒ A2

as required. We now check the commuting condition. Informally, dk acts
by ignoring the labels and composing the underlying arrows of Q, as does
µ. Since µ is induced from composition in Q, and tQ+ is constructed from
composition of a formal composite of arrows of Q, we have f2 ◦gk+1 = dk+1

as required.
So we have for each k ≥ 0 an embedding gk as required. The gk then in-

duce a map A1 −→ A2. It is straightforward to check that this is surjective;
by construction it makes the following diagram commute

S′

A1 A2
-

R 	

so we have an isomorphism

(A1, f1) ∼= (A2, f2)

as required.
Finally we check that the naturality condition for a monad opfunctor is

satisfied. Given a morphism (A, f) −→ (B, g) ∈ Set/S′ it is clear from the
constructions that the following diagram commutes in Set/S′
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B1

A1 A2

B2

-

-
? ?

≃

≃
3

s +

k
S′

and the other axioms for a monad opfunctor are easily checked. So we have

(EQ+ , TQ+) ∼= (EQ
′, TQ

′)

as required. �
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Appendix B

Opetopes via

Kelly-Mac Lane Graphs

In this appendix we show how opetopes can be constructed using Kelly-
Mac Lane graphs. This arises from the fact that a tree can be expressed
as a Kelly-Mac Lane graph, and thus the slice construction can also be
expressed in terms of such graphs.

In [KM], Kelly and Mac Lane introduce a notion of graph to study
coherence for symmetric monoidal closed categories. In Section B.2, we
study the trees used in the slice construction for symmetric multicategories
and show how to express such trees as Kelly-Mac Lane graphs; we will use
the formal description of trees as given in Section 3.1.1.

Then in Section B.3 we use this characterisation of trees to restate the
definition of opetopes, and prove that this construction does indeed give
equivalent categories of k-opetopes to the ones constructed in Chapter 2.

Blute ([Blu]) has established a relationship between Kelly-Mac Lane
graphs and the proof nets of Linear Logic, so the material in this appendix
should in turn give a relationship between opetopes and proof nets. How-
ever, we do not pursue this matter here.

We begin by giving a minimal account of the theory of Kelly-Mac Lane
graphs, including no more than what is required for the purposes of this
work. We refer the reader to [KM] for the full details.

B.1 Background on Kelly-Mac Lane Graphs

In this section we give a brief account of the theory of Kelly-Mac Lane
graphs. In [KM], Kelly and Mac Lane study coherence for symmetric
monoidal closed categories. In brief, a symmetric monoidal closed cate-
gory is a symmetric monoidal category C = (C,⊗, I, a, b, c) equipped, in
addition, with a functor

[ , ] : C op × C −→ C

and natural transformations

d = dAB : A −→ [B,A⊗B]
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e = eAB : [A,B]⊗A −→ B

satisfying certain axioms. (Here a, b and c are the natural isomorphisms
for associativity, unit and symmetric action respectively.) In particular we
have a natural isomorphism

π : C(A⊗B,C) −→ C(A, [B,C]).

Kelly and Mac Lane refer to such categories simply as closed categories and
we do the same.

Kelly and Mac Lane introduce a notion of graph which enables a par-
tial solution to the question: when does a diagram in a closed category
commute? In fact we are not concerned with the coherence question here,
so we only give the construction of the graphs and state one theorem from
[KM] which will later be useful.

Kelly and Mac Lane define a category G whose objects are shapes and
whose morphisms are graphs; this is seen to be a closed category. They then
define a subcategory whose morphisms are the allowable morphisms. These
are defined as precisely those morphisms of G demanded by the symmetric
monoidal closed structure.

We do not need to use the notion of ‘free symmetric monoidal closed
category’ although this notion should give a more abstract treatment of
the material; the graphs we use should be morphisms in such a category.
However, this is somewhat beyond the scope of this thesis.

B.1.1 Shapes

We define shapes by the following inductive rules:

1) I is a shape

2) 1 is a shape

3) if S and T are shapes then so is S ⊗ T

4) if S and T are shapes then so is [S, T ]

Thus shapes are formal objects built from 1, I, ⊗ and [ , ].
We assign to each shape T a variable set v(T ) which may be considered

as a list of +’s and −’s, defined inductively as follows:

1) v(I) = ∅

2) v(1) = {+}

3) v(T ⊗ S) = v(T )
∐

v(S)

4) v([T, S]) = v(T )op
∐

v(S)

Here
∐

is the concatenation of lists and v(T )op is v(T ) with all signs
reversed. Kelly and Mac Lane write

v(T )
∐

v(S) = v(T )+̂v(S)
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v(T )op
∐

v(S) = v(T )+̃v(S)

and call these the ordered sum and twisted sum respectively. The sign of
each variable is called its variance.

In fact we only need the strict monoidal version of this theory. That is,
we put

(T ⊗ S)⊗R = T ⊗ (S ⊗R)

and

T ⊗ I = T.

For example,

[ [1, 1] ⊗ 1⊗ 1 , I ]⊗ 1

is a shape with

v(T ) = {+,−,−,−,+}.

B.1.2 Graphs

A graph T −→ S is defined to be a fixed point free pairing of the vari-
ables in T and S such that paired elements have opposite variances in
v(T )op

∐

v(S). (Kelly and Mac Lane refer to such paired elements as
“mates”.) Equivalently, this is a bijection between the +’s and the −’s
in v(T )op

∐

v(S).

For example, the following is a graph

[ [1, 1] ⊗ 1⊗ 1 , I ] ⊗ 1 −→ [ 1⊗ 1 , 1⊗ [1, 1] ]

showing variances:

− −

?

o 6 6

?

−

− − −

+ +

+ +
.

Graphs are composed in the obvious way, so that shapes and graphs
form a category G. Moreover, G has the structure of a closed category
as follows. ⊗ and [ , ] are defined on graphs in the obvious way, and the
constraints are given by the following graphs:

( T ⊗ S ) ⊗ R

T ⊗ ( S ⊗ R )

a + + +

+ + +
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T ⊗ Ib

T +

+

T ⊗ S

S ⊗ T

c + +

+ +

Td

[ S , T ⊗ S ]

+

++−

[ T , S ] ⊗ T

S

e +

+

+−

.

The diagrams on the right give variances, showing that these are in-
deed graphs; note that in the twisted sum the variances of the domain are
reversed. For the strict monoidal version we have a = 1 and b = 1.

Observe that we realise Kelly-Mac Lane graphs as pictorial graphs by
joining paired objects with an edge. In the diagrams above, the objects
are in fact shapes, so the drawn edges in fact represent multiple edges as
necessary.

We will later introduce the notion of graphs labelled in a category C

(Section B.3.1); these are the morphisms of a category which we will call
KC. We will then see that the graphs above may be considered as graphs
labelled in the category 1. So for consistency we write G = K1.

B.1.3 Allowable morphisms

The allowable morphisms are then defined to be the smallest class of mor-
phisms of K1 satisfying the following conditions:
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1) For any T, S,R each of the following morphisms is in the class:

1 : T −→ T
a : (T ⊗ S)⊗R −→ T ⊗ (S ⊗R)

a−1 : T ⊗ (S ⊗R) −→ (T ⊗ S)⊗R
b : T ⊗ I −→ T

b−1 : T −→ T ⊗ I
c : T ⊗ S −→ S ⊗ T.

2) For any T, S each of the following morphisms is in the class:

d : T −→ [S, T ⊗ S]
e : [T, S]⊗ T −→ S.

3) If f : T −→ T ′ and g : S −→ S′ are in the class so is

f ⊗ g : T ⊗ S −→ T ′ ⊗ S′.

4) If f : T −→ T ′ and g : S −→ S′ are in the class then so is

[f, g] : [T ′, S] −→ [T, S′].

5) If f : T −→ S and g : S −→ R are in the class then so is gf : T −→ R.

We write A1 for the category of shapes and allowable morphisms.
The main theorem of [KM] that we use is as follows:

Theorem B.1.1. If f : T −→ S and g : S −→ R ∈ G are allowable then
they are compatible, that is, composing them gives no closed loops.

For the proof, see [KM].

B.1.4 Duality

Since K1 is closed, given any graph

ξ : S ⊗ T −→ U ∈ K1

there is a unique dual
ξ̄ : S −→ [T,U ]

so in particular, given a graph

α : S −→ T

there is a unique dual
ᾱ : I −→ [S, T ].

We will eventually be concerned with graphs of the form

α : A1 ⊗ · · · ⊗Ak −→ B;

it is sometimes convenient or indeed necessary to use the dual

ᾱ : I −→ [ A1 ⊗ · · · ⊗Ak , B ]

and we may refer to either of these graphs as α when the exact form is not
relevant.



132 Appendix B. Opetopes via Kelly-Mac Lane Graphs

B.2 Trees

In this section we show how a tree may be expressed as an allowable graph,
that is, as a morphism in the closed category A1.

The trees in question are those used in the slice construction as defined
in Section 2.1.1. We are thus able to restate the slice construction using
the language of closed categories, which then enables us to give another
construction of opetopes.

We begin by recalling the trees in question, and the more formal defi-
nition of such trees as given in Section 3.1.1. This formalisation enables us
to express such trees as graphs in K1 of a certain shape, not a priori allow-
able. We then show that in fact any graph arising in this way is allowable,
and that, conversely, all such allowable graphs arise in this way.

B.2.1 Background on trees

We will first consider unlabelled, ‘combed’ trees, with ordered nodes, as in
Section 3.1

That is, a tree T = (T, ρ, τ) consists of

i) A planar tree T

ii) A permutation ρ ∈ Sl where l = number of leaves of T

iii) A bijection τ : {nodes of T} −→ {1, 2, . . . , k} where k = number of
nodes of T ; equivalently an ordering on the nodes of T .

Suppose we have nodes N1, . . . ,Nk, where Ni has inputs {xi1, . . . , ximi
}

and output xi. Also, let N be a node with inputs {z1, . . . , zl} and output

z, with l = (
k
∑

i=1
mi)− k + 1. A tree with nodes Ni is given by a bijection

α :
∐

i

{xi1, . . . , ximi
}
∐

{z} −→
∐

i

{xi}
∐

{z1, . . . , zl}

such that no closed loop arises; a closed loop arises precisely when there is
a non-empty sequence of indices

{t1, . . . , tn} ⊆ {1, . . . , k}

such that for each 2 ≤ j ≤ n

α(xtjbj
) = xtj−1

for some 1 ≤ bj ≤ mj, and

α(xt1b1) = xtn

for some 1 ≤ b1 ≤ m1.



B.2 Trees 133

B.2.2 Trees as morphisms in K1

We now show how trees may be expressed as graphs. Here we consider
unlabelled trees; the labelled version follows easily.

Let 1 be the category with just one object and one (identity) morphism.
We write the single object of 1 as 1. Then we express a node of a tree as
the following object in K1

Xm = [1⊗ . . .⊗ 1, 1] = [1⊗m, 1]

where m is the number of inputs of the node.
Now consider a tree T with (ordered) nodes N1, . . . Nk where Ni has mi

inputs. We show that this tree may be represented as a morphism

Xm1 ⊗ . . .⊗Xmk

ξT−→ Xl ∈ K1

using the formal description of trees as in Section 3.1.1.

Lemma B.2.1. Let T be a tree with N1, . . . ,Nk be nodes where Ni has
inputs {xi1, . . . , ximi

} and output xi. Then T is given by a morphism

ξT : Xm1 ⊗ . . .⊗Xmk
−→ Xl ∈ K1

where l = (
k
∑

i=1
mi)− k+ 1. Note that if k = 0 then the left hand side of the

above expression becomes I.

Proof. Recall that a graph ξT as above is precisely a bijection from the
−’s to the +’s in the twisted sum

v(Xm1 ⊗ . . .⊗Xmk
)+̃v(Xl).

By Lemma 3.1.1, T is given by a bijection
∐

i

{xi1, . . . , ximi
}
∐

{z} −→
∐

i

{xi}
∐

{z1, . . . , zl}.

Observe that the elements of the left hand side of this expression are pre-
cisely the −’s in the twisted sum above, and those of the right hand side
are precisely the +’s. �

As in Section 3.1.1, the idea is that a tree is constructed by identifying
each node output with the node input to which it is joined, unless it is the
root; similarly each input is identified with a node output unless it is a leaf.
This identification gives the mates in the graph ξT , where the codomain Xl

is representing the leaves and the root of the tree T .
For example the following tree as described in Section 3.1.1

N2

N1
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is be expressed as the following morphism in K1

[ 1⊗ 1 , 1 ] ⊗ [ 1⊗ 1⊗ 1 , 1 ]

[ 1⊗ 1⊗ 1⊗ 1 , 1 ]

and the following representation giving variances shows that this is indeed
a graph:

+

+ +−− −−

−−−

−

−

Formally, the graph for a tree T as above is given as follows. We write

Xmi
= [ Ai1 ⊗ . . . ⊗Aimi

, Ai ]

Xl = [ B1,⊗ . . .⊗Bl, , B ]

where each Aij , Ai, Bi, B = 1 and in the twisted sum we have variances

v(Aij) = +, v(Ai) = −
v(Bp) = −, v(B) = +.

Then the graph ξT is given as follows.

• considering node inputs

For each i, j, either

i) the jth input of Ni is joined to the output of Nr, say, in which case
Aij is the mate of Ar, or

ii) the jth input of Ni is the pth leaf of the tree T , in which case Aij is
the mate of Bp in ξT .

• considering node outputs

For each r, either

i) the output of Nr is the root of the tree, in which case Br is the mate
of B, or
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ii) the output of Nr is joined to the jth input of Ni, say, in which case
Ar is the mate of Aij.

Note that the null tree

is a graph I
ξ
−→ X1 as follows:

− +
W

I

?
ξ

.

So we have shown that every tree is given by a graph in K1; in Sec-
tion B.2.4 we show that any such graph is allowable. The proof is by in-
duction, and the following section enables us to makes the induction step.

B.2.3 Composition of trees

We now discuss two ways of composing trees:

1) leaf-root composition in which a leaf of one tree is attached to the
root of another, for example

7→?

2) node-replacement composition in which a node of one tree is replaced
by another tree, for example
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:

7→

In the first case the inputs of the tree are considered to be the leaves,
and the output the root; note that an issue of node-ordering arises, so that
this ‘composition’ is not associative. However, it facilitates the induction
argument in Section B.2.4, which is why we discuss it here.

In the second case the inputs are the nodes, and the output a node with
one input edge for each leaf of the tree. This form of composition is used
in Section B.4 in the slice construction.

We show how each of these forms of composition arises for trees repre-
sented as graphs as in Section B.2.2

Recall that a tree is expressed as a morphism

Xm1 ⊗ · · · ⊗Xmk
−→ Xl ∈ K1.

Now in general, given any morphisms in K1

B1 ⊗ · · · ⊗Bn
f
−→ Ap

A1 ⊗ · · · ⊗Am
g
−→ A

for some 1 ≤ p ≤ m, we may form the composite

f ◦ (1⊗ · · · ⊗ 1⊗ g ⊗ 1⊗ · · · ⊗ 1)

which we write as

g ◦p f : A1 ⊗ · · · ⊗Aj−1 ⊗B1 ⊗ · · · ⊗Bn ⊗Ap+1 ⊗ · · · ⊗Am −→ A.

Note that if p is evident from the context we simply write g ◦ f .
This composition gives node-replacement composition of trees. Con-

sider trees S, T with graphs

ξS : Xs1 ⊗ · · · ⊗Xsn −→ Xl

ξT : Xt1 ⊗ · · · ⊗Xtm −→ Xk .

Then S may be composed at the pth node of T if the number of leaves of
S equals the number of inputs of the pth node, that is, if Xl = Xtp . Then
the graph for the composite tree is given by

ξS ◦p ξT .

For example as above, suppose we have p = 2 and
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1

2

1

2

1

2

3

S =

T =

7→

-

then we express this with graphs as follows

+

+ +−−− −−

−− +−−−−

+−−−− −

ξS

ξT

= ξT ◦2 ξS

+ +−− −−− +−−

+−−−−−

In fact, considering the dual forms ξ̄S and ξ̄T , we see that this composite
may also be expressed by means of a ‘composition graph’ ξ as follows. We
have

ξ̄S : I −→ [Xs1 ⊗ · · · ⊗Xsn , Xl]

ξ̄T : I −→ [Xt1 ⊗ · · · ⊗Xtm , Xk].

Then ξ is a graph

[Xt1 ⊗ · · · ⊗Xtm , Xk]⊗ [Xs1 ⊗ · · · ⊗Xsn , Xl]
↓

[Xt1 ⊗ · · · ⊗Xtp−1 ⊗Xs1 ⊗ · · · ⊗Xsn ⊗Xtp+1 ⊗ · · · ⊗Xtm , Xk]

where Xl is joined to Xtp in the domain, and for all other j, Xj in the
domain is joined to Xj in the codomain.

We now consider leaf-root composition. Consider trees S, T as above.
We seek to attach the root of S to the qth leaf of T , and we adopt the
convention that the nodes of S are then listed before those of T in the final
tree.

This is achieved in K1 by placing the graphs ξS and ξT side by side,
that is, taking their tensor product, and composing the result with a ‘com-
position graph’ that joins up the correct leaf and root as required. We
write

Xl = [A1 ⊗ · · · ⊗Al, A]
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Xk = [B1 ⊗ · · · ⊗Bk, B]

Xl+k−1 = [C1 ⊗ · · · ⊗ Cl+k−1, C]

and the ‘composition graph’ as

ξ : Xl ⊗Xk −→ Xl+k−1.

The idea is that the leaves of S are inserted into the list of leaves of T at
the qth place to give

[B1 ⊗ · · · ⊗Bq−1 ⊗A1 ⊗ · · · ⊗Al ⊗Bq+1 ⊗ · · · ⊗Bk , B]

so the composition graph ξ is given as follows:

i) the mate of A is Bq

ii) the mate of B is C

iii) for 1 ≤ i ≤ l the mate of Ai is Cq+i−1

iv) for 1 ≤ i ≤ q − 1 the mate of Bi is Ci

v) for q + 1 ≤ i ≤ k the mate of Bi is Cl+i−1.

For example, suppose we have q = 2 with

7→?

S =

T =

1

2

2

2

1

1

3
4

then this is represented by the following graph in K1:
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+

+ +−−− −−

−−−−

+−− +−−−−

+−−−−

+−−−−−−−−

−

ξS ⊗ ξT

ξ

+

+ +−−− −−

− −−−−−−−

+−− +−−−−

=

Note that we could adopt a different convention for ordering the nodes
of the composite tree, using ξT ⊗ ξS . Of course, neither convention yields
an associative composition, but since we are not at this time trying to form
a category (or multicategory) of such trees, we do not pursue this matter
here.

B.2.4 The graph of a tree is allowable

We have shown how any tree is represented by a graph. We now show that
any such graph is allowable.

Proposition B.2.2. Given a tree T as above, the graph ξT is allowable.

Proof. By induction on the height of trees. Here the height of a tree is
the maximum number of nodes on any path from a leaf to the root. A tree
of height 0 is the null tree

represented by the graph

+−
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which is the morphism

I
dI1−→ [1, I ⊗ 1] = [1, 1]

which is allowable.
A tree of height 1 is just a node

· · ·

which is represented by an identity graph

· · ·−−− +

· · ·−−− +

which is allowable.
A tree of height h ≥ 1 may be considered as a composite

· · ·

T1 T2 Tm· · ·

�

bottom node of T

where the Ti are subtrees of T ; by construction they have height ≤ h. So
by induction each of these is represented by an allowable graph.

It is therefore sufficient to show that leaf-root composition of allowable
graphs gives an allowable graph. Note that leaf-root composition as defined
in Section B.2.3 will not necessarily give the correct node ordering on the
final tree; however, this can be achieved by composing with symmetries as
necessary. This will not affect the allowability of the graph since symmetries
are allowable graphs, and composites of allowable graphs are allowable.

Furthermore, since tensors and composites of allowable graphs are al-
lowable, it is sufficient to show that all ‘composition graphs’ ξ as defined
in Section B.2.3 are allowable.

Since any permutation may be written as a composite of transpositions,
and is therefore allowable, we may assume without loss of generality that
q = 1 in the composition. So it is sufficient to show that any graph ξ of the
following form is allowable. Writing

Xm1 = [A1 ⊗ · · · ⊗Am1 , A]



B.2 Trees 141

Xm2 = [B1 ⊗ · · · ⊗Bm2 , B]

Xm1+m2−1 = [C1 ⊗ · · · ⊗ Cm1+m2−1, C]

then

ξ : Xm1 ⊗Xm2 −→ Xm1+m2−1

is given as follows.

i) the mate of A is B1

ii) the mate of B is C

iii) for all 1 ≤ i ≤ m1 the mate of Ai is Ci

iv) for 2 ≤ i ≤ m2 the mate of Bi is Cm1+i−1.

So ξ has the form

· · ·−−− +

· · ·−−− +− · · ·−−− +−

−−−− · · ·

Writing

A1 ⊗ · · · ⊗Am1 = Ā

B2 ⊗ · · · ⊗Bm2 = B̄

we may abbreviate this as

[Ā, A] ⊗ [ A⊗ B̄ , B ]

[ Ā⊗ B̄ , B]

which may be written as the following composite of allowable graphs:
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[ Ā⊗ B̄ , [Ā, A] ⊗ [ A⊗ B̄ , B ] ⊗ Ā⊗ B̄ ]

[Ā, A] ⊗ [ A⊗ B̄ , B ]

[ Ā⊗ B̄ , [ A⊗ B̄ , B ] ⊗ [Ā, A] ⊗ Ā⊗ B̄ ]

[ Ā⊗ B̄ , [ A⊗ B̄ , B ] ⊗ A⊗ B̄ ]

[ Ā⊗ B̄ , B]
?

?

?

?

d

[1, c ⊗ 1]

[1, 1⊗ e⊗ 1]

[1, e]

[Ā, A] ⊗ [ A⊗ B̄ , B ]

[ Ā⊗ B̄ , B]

=

so ξ is allowable as required. �

B.2.5 Every allowable graph is a tree

We have seen that every tree is represented by a unique graph, and that
this graph is allowable. In this section we prove the converse, that every
allowable graph of the correct shape represents a unique tree.

We now use the characterisation of trees as in Section 3.1.1. As in that
section, for the converse we see that every morphism

Xm1 ⊗ · · · ⊗Xmk
−→ Xl ∈ K1

gives a graph but that it is not necessarily a tree; we need to ensure that
the resulting graph has no closed loops. We copy Lemmas 3.1.2 and 3.1.3,
“translating” them into the language of closed categories. Note that the
word ‘graph’ is used in the ordinary sense; for clarity we refer to Kelly-
Mac Lane graphs as ‘morphisms in K1’.

Lemma B.2.3. Let N1, . . . ,Nk be nodes where Ni has inputs

{Ai1, . . . , Aimi
}
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and output xi. Let ξ be a morphism

ξ : Xm1 ⊗ . . . ⊗Xmk
−→ Xl ∈ K1

where l = (
k
∑

i=1
mi)− k + 1. Then ξ defines a graph with nodes N1, . . . ,Nk.

Lemma B.2.4. Let ξ be a graph as above. Then ξ has a closed loop if and
only if there is a non-empty set of indices

{t1, . . . , tn} ⊆ {1, . . . , k}

such that for each 2 ≤ j ≤ n the mate of Atj−1 under ξ is Atjbj
and the

mate of Atn is At1b1 for some 1 ≤ bj ≤ mj .

Proposition B.2.5. If there is a set of indices {t1, . . . tn} as above then ξ
is not allowable.

Corollary B.2.6. Let ξ be a morphism as above. Then ξ is a tree if and
only if it is allowable.

To prove this we will use Theorem B.1.1 (Theorem 2.2 of [KM]) which
states that if two composable morphisms are allowable then they are com-
patible, that is, composing them does not result in any closed loops. So
to show that ξ as above is not allowable, we aim to construct an allowable
morphism η such that η and ξ are not compatible. The following lemma
provides us with such a morphism.

Lemma B.2.7. Write Xk = [A1 ⊗ · · · ⊗ Ak, A] with Ai, A = 1 and let
1 ≤ p ≤ k.

Then there is an allowable morphism

θp : [A1 ⊗ · · · ⊗Ap−1 ⊗Ap+1 ⊗ · · · ⊗Ak, I] −→ Xk

with graph

[ A1 ⊗ · · · ⊗Ap−1 ⊗Ap+1 ⊗ · · · ⊗Ak , I ]

[ A1 ⊗ · · · ⊗Ap−1 ⊗Ap ⊗Ap+1 ⊗ · · · ⊗Ak , A ]

· · ·· · ·

.

Proof. Write Y = A1 ⊗ · · · ⊗Ap−1 ⊗Ap+1 ⊗ · · · ⊗Ak. Since symmetries
are allowable, it is sufficient to exhibit an allowable morphism

[Y, I] −→ [Y ⊗ 1, 1]

with underlying graph
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[ Y , J ]

[ Y ⊗ 1 , 1 ]
.

We have the following composite of allowable morphisms:

[Y, I]

[ Y ⊗ 1 , [Y, I] ⊗ Y ⊗ 1 ]

[ Y ⊗ 1 , I ⊗ 1 ] = [ Y ⊗ 1 , 1 ]

.................

....................

?

?

d

[1, e⊗ 1]

which has the underlying graph as required; since composites of allowable
morphisms are allowable, the composite is allowable. �

Proof of Proposition B.2.5. To show that

ξ : Xm1 ⊗ · · · ⊗Xmk
−→ Xl

is not allowable we construct an allowable morphism

η : T −→ Xm1 ⊗ · · · ⊗Xmk

such that η and ξ are not compatible, that is, composing them produces a
closed loop.

We aim to construct η in such a way that for each 1 ≤ j ≤ n the mate
of Atj is Atjbj

so that in the composite graph we have the following closed
loop:

η ξ η
At1b1 At1 At2b2 At2 · · · Atm

ηξ

.

We use morphisms of the form θp as given in Lemma B.2.7.
Put T = Y1 ⊗ · · · ⊗ Yk where

Yi = [Atj1,⊗ · · · ⊗Atj(bj−1) ⊗Atj (bj+1) ⊗ · · · ⊗Atjmi
, I]
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if i = tj for some 1 ≤ j ≤ n, and

Yi = Xmi

We define η as a tensor product

f1 ⊗ · · · ⊗ fk : Y1 ⊗ · · · ⊗ Yk −→ Xm1 ⊗ · · · ⊗Xmk

where

fi =

{

θbj
if i = tj for some 1 ≤ j ≤ n

1 otherwise

By Lemma B.2.7 each fi is allowable, so η is allowable.
Since the mate of Atj under θbj

is Atjbj
we have a closed loop as above,

so η and ξ are not compatible. Since η is allowable, it follows from Theo-
rem B.1.1 that ξ is not allowable. �

Finally we sum up the results of this section in the following proposition.

Proposition B.2.8. A tree is a unique morphism of the form

Xm1 ⊗ · · · ⊗Xmk
−→ Xl ∈ K1

and this morphism is allowable. Conversely, any such allowable morphism
represents a unique tree.

Corollary B.2.9. A tree is a unique allowable morphism of the form

I −→ [Xm1 ⊗ · · · ⊗Xm1 ,Xl] ∈ K1.

Conversely, any such allowable morphism represents a unique tree.

Proof. Follows from the closed structure of K1. �

In order to make Proposition B.2.8 and Corollary B.2.9 more precise, we
seek an equivalence between a ‘category of trees’ and a ‘category of allow-
able morphisms’. In fact, trees of this form arise naturally by considering
configurations for composing arrows of a symmetric multicategory. That
is, they arise from the ‘slicing’ process as defined in [BD2] and 2.1.1; the
trees then appear as arrows of the multicategory I2+, and so as objects of
I3+, forming a category C3.

So we proceed by considering the slice construction using the represen-
tation in closed categories. In considering this for constructing trees, we
in fact deal with all the machinery used in constructing k-opetopes for all
k ≥ 0, since these are formed by iterating the construction. This is the
subject of the next section.

B.3 Opetopes

In this section we use the results of the previous section to construct
opetopes. However we first need to introduce the notion of labelled Kelly-
Mac Lane graphs.
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B.3.1 Preliminaries

For the construction of opetopes we require the ‘labelled’ version of the
theory presented in Sections B.1 and B.2: labelled shapes, labelled graphs
and labelled trees.

Given a category C we can form labelled shapes (in C), that is, shapes
labelled by the objects of C. A labelled shape is a shape T with each 1
‘labelled’ by an object Ai of C. We write this as

|T |(A1, . . . , Ak).

The variable set is then defined to be the variable set of the underlying
shape.

For example given

T = [ [1, 1] ⊗ 1⊗ 1 , I ]⊗ 1

we have a labelled shape

α = |T |(A1, . . . , A5) = [ [A1, A2]⊗A3 ⊗A4 , I ]⊗A5

with underlying shape T , and

v(α) = v(T ) = {+,−,−,−,+}.

Given a category C we can form labelled graphs, that is, graphs whose
edges are labelled by morphisms of C as follows. Consider labelled shapes
α and β with underlying shapes T and S respectively. A labelled graph

α −→ β

is a graph

ξ : T −→ S

together with a morphism x −→ y for each pair of labels x, y whose un-
derlying variables are mates under ξ, with v(x) = − and v(y) = + in the
twisted sum. That is, the morphism is in the direction

− −→ +.

For example, the following is a labelled graph

[ [A1, A2] ⊗ A3 ⊗A4 , I ] ⊗ A5

[ B1 ⊗B2 , B3 ⊗ [B4, B5] ]
?

6 6

?

f1

f2 f3

f4

f5

o
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with underlying graph and variances as below

− −

?

o 6 6

?

−

− − −

+ +

+ +
.

Observe that, since the variances of the domain are reversed in the
twisted sum, the direction of morphisms is also reversed in the domain.

We write KC for the category of labelled shapes and labelled graphs in
C; thus G = K1 as mentioned in Section B.1.2.

A labelled graph is called allowable if and only if its underlying graph
is allowable. We write AC for the category of labelled shapes and allow-
able labelled morphisms. We observe immediately that the correspondence
between trees and graphs exhibited in Section B.2 generalises to a corre-
spondence between labelled graphs and labelled trees.

Lemma B.3.1. A labelled tree in C is precisely an allowable morphism

α1,⊗ · · · ⊗ αk −→ α ∈ AC

with underlying shape

Xm1 ⊗ · · · ⊗Xmk
−→ X(

∑

i
mi)−k+1.

Recall (Section 2.1.1) that a labelled tree gives a ‘configuration for com-
posing’ arrows of a symmetric multicategory via object-morphisms, as used
in the slice construction. By the above correspondence, a labelled graph
as above may also be considered to give such a configuration; thus in Sec-
tion B.4.1 we will use such graphs to give an alternative description of the
slice construction. We will need the following construction.

Given categories C and D and a functor

F : C −→ KD

we define a functor
KF : KC −→ KD

as follows.

• on objects

An object in KC is a labelled shape

α = |T |(x1, . . . , xn);

put
KF (α) = |T |(Fx1, . . . Fxn) ∈ KD.
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• on morphisms

Given a morphism

|T |(x1, . . . , xn)
f
−→ |S|(xn+1, . . . , xm) ∈ KC

we define KFf as follows. Suppose f has underlying graph ξ, say. Consider
a pair of mates a and b in ξ, with the edge joining them ‘labelled’ with
morphism

g : a −→ b ∈ C.

This gives a morphism

Fg : Fa −→ Fb ∈ KD.

So Fg is a graph labelled in D. Then KFf consists of all such graphs given
by mates in ξ, positioned according to the positions in ξ.

Furthermore, if F : C −→ D then we get

AF : AC −→ AD

by restricting the functor KF .

B.3.2 The construction of opetopes

We seek to define, for each k ≥ 0, a category Opek of k-opetopes. A k-
opetope θ is to have a list of input (k − 1)-opetopes α1, . . . , αm, say, and
an output (k− 1)-opetope α, say. This data is to be expressed as an object

[ α1 ⊗ · · · ⊗ αm , α ] ∈ AOpek−1

called the frame of θ (see [BD2]). Each frame has shape Xm = [1⊗m, 1] for
some m ≥ 0. So, for each k we will have a functor

φk : Opek −→ AOpek−1

and thus
Aφk : AOpek −→ AOpek−1.

Opek is defined inductively; for k ≥ 2 it is a certain full subcategory of
the comma category

(I ↓ Aφk−1)

with the following motivation. A k-opetope θ with frame

[ α1 ⊗ · · · ⊗ αm , α ]

is a configuration for composing α1, . . . , αm to result in α. That is, it is an
allowable morphism

I
θ
−→ [φk−1α1 ⊗ · · · ⊗ φk−1αm , φk−1α ] ∈ AOpek−2

such that the composition does result in α. Such a θ is clearly an object of
(I ↓ Aφk−1); so we take the full subcategory whose objects are all those of
the correct form.

In fact we begin with a more general construction for building up di-
mensions.
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Definition B.3.2. A ladder is given by

• for each k ≥ 0 a category Dk

• for each k ≥ 1 a functor Fk : Dk −→ ADk−1

such that for each k ≥ 2, Fk is of the form

Dk −→ (I ↓ AFk−1) −→ ADk−1

where the second morphism is the forgetful functor.

Note that given Fk : Dk −→ ADk−1 we have a functor

AFk : ADk −→ ADk−1

and the comma category (I ↓ AFk−1) has as its objects pairs (θ, z) where
z ∈ ADk−1 and θ is an allowable morphism

I
θ
−→ AFk−1(z) ∈ ADk−1.

Definition B.3.3. The opetope ladder is given as follows.

• D0 = 1 = {x}, say

• D = 1 = {u}, say, with

φ1 : D1 −→ AD0

u 7−→ [x, x]

• For k ≥ 2, Dk is a full subcategory of (I ↓ Aφk−1). This comma
category has objects (θ, z) where z ∈ ADk−1 and

I
θ
−→ Aφk−1(z)

is an allowable morphism in ADk−2. Then the subcategory Dk by the
following two conditions:

A. The objects of Dk are all (θ, z) such that z has shape Xm for
some m ≥ 0. So z = [α1 ⊗ · · · ⊗ αm, α] for some αi, α ∈ Dk−1.

B. For k ≥ 3 we require in addition that

Aφk−2θ̄ ◦ (α1 ⊗ · · · ⊗ αm) = α

as morphisms in ADk−3.

• For k ≥ 2 the functor φk : Dk −→ ADk−1 is the following composite

Dk →֒ (I ↓ Aφk−1) −→ ADk−1

where the functors shown are the inclusion followed by the forgetful
functor.
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Note that the composition in condition B is possible: each αi is an
object of Dk−1, so is by definition a morphism

I −→ Aφk−2(φk−1αi) ∈ ADk−3.

Now θ is a morphism

I −→ [φk−1α1 ⊗ · · · ⊗ φk−1αm , φk−1α ]

so
θ̄ : φk−1α1 ⊗ · · · ⊗ φk−1αm −→ φk−1α

so the domain of Aφk−2θ̄ is indeed the codomain of (α1 ⊗ · · · ⊗ αm) and
the composite in ADk−3 may be formed.

Definition B.3.4. For each k ≥ 0 the category Dk defined above is the
category of k-opetopes. We write Dk = Opek. If the frame of a k-opetope
has shape Xm we say θ is an m-ary opetope.

Remarks B.3.5.

1) In general (that is for k ≥ 3) the objects of Dk are those of (I ↓ Aφk−1)
satisfying the conditions A and B. Condition A restricts our scope
only to those objects having the correct shape; condition B ensures
that the ‘output’ of the opetope is indeed the composite given. For
k = 2 condition B does not apply; any configuration of composing
identity maps gives the identity.

2) A morphism (θ, z)
f
−→ (θ′, z′) in (I ↓ Aφk−1) is a morphism

f : z −→ z′ ∈ ADk−1

such that the following diagram commutes:

I

Aφk−1(z)

Aφk−1(z
′)

*

j ?

Aφk−1(f)

θ

θ′

so a morphism θ
f
−→ θ′ in Dk is given as follows. Writing

φkθ = [α1 ⊗ · · · ⊗ αm, α]

φkθ
′ = [β1 ⊗ · · · ⊗ βj , β]

f must be a morphism

[α1 ⊗ · · · ⊗ αm, α] −→ [β1 ⊗ · · · ⊗ βj , β] ∈ ADk−1.

So we must have m = j and f has the form
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[ α1 ⊗ · · · ⊗ αm , α ]

[ β1 ⊗ · · · ⊗ βm , β ]

666 6

g1 gm
?

g

· · ·

that is, a permutation σ ∈ Sm and morphisms

gi : βi −→ ασ(i), for each 1 ≤ i ≤ m

g : α −→ β

in Dk−1, such that the following diagram commutes

[ φk−1α1 ⊗ · · · ⊗ φk−1αm , φk−1α ]

[ φk−1β1 ⊗ · · · ⊗ φk−1βm , φk−1β ]

I

66 66

?

*

j

φk−1g1 φk−1gm

φk−1g

· · ·

θ

θ′

B.3.3 Examples

We now give the first few stages of the construction explicitly, together with
some examples.

• k = 0

Ope0 = 1, that is, there is only one 0-opetope. We may think of this as
an object · ; we write x for convenience.

• k = 1

Ope1 = 1, that is, there is only one 1-opetope, u, say. We have

φ1(u) = [x, x] ∈ AOpe0

that is, the unique 1-opetope u has one input 0-opetope and one output
0-opetope. We may think of this as

−→

or, showing variances

− +

and then we have
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−

−

+

+

=φ1(1u)

,

an allowable morphism in AOpe0. (We do not show arrowheads since all
arrows in Ope0 are identity arrows.)

• k = 2

We seek to construct the category Ope2. First we consider an object
α ∈ Ope2. α has frame

φ2α ∈ AOpe1

where φ2α has shape Xm for some m ≥ 0. So we have

φ2α = [u⊗m, u] = [u⊗ · · · ⊗ u, u].

Now α is an allowable morphism

I
α
−→ [ φ1u⊗ · · · ⊗ φ1u , φ1u ] ∈ AOpe0 = A1

that is
I

α
−→ [ [x, x]⊗ · · · ⊗ [x, x] , [x, x] ]

or equivalently a morphism

[x, x]⊗ · · · ⊗ [x, x] −→ [x, x] ∈ A1.

For example, for m = 3 we may have a graph

−+ −+ −+

−+

which we will later see corresponds to the following

⇓2

1

3

where the numbers show the order in which the input 1-opetopes are listed.
For the nullary case m = 0 we seek an allowable morphism

I −→ [x, x].

There is precisely one such, given by the following graph
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+−

and we will later see that this corresponds to the nullary 2-opetope

⇓

.

We now consider a morphism

α
f
−→ α′ ∈ Ope2.

We must have

φ2α = φ2α
′ = [u⊗m, u],

say. Then f is a morphism

[u⊗m, u] −→ [u⊗m, u] ∈ AOpe1 = A1.

So f must be a permutation σ ∈ Sm, an isomorphism. So we have

Ope2(α,α
′) =

{

Sm if α and α′ are both m-ary
∅ otherwise

and Ope2 is equivalent to a discrete category whose objects are the natural
numbers.

Note that the action of φ2 on morphisms is given as follows. Given a
morphism f as above, the morphism

φ2f : φ2α −→ φ2α
′ ∈ AOpe1

is given by the forgetful functor

(I ↓ Aφ1) −→ AOpe1

so is simply the graph given by the permutation σ.

• k = 3

We now seek to construct the category Ope3. We first consider an
m-ary opetope θ ∈ Ope3 with frame

[α1 ⊗ · · · ⊗ αm, α] ∈ AOpe2

such that

φ2αi = [u⊗ni , u] for each 1 ≤ i ≤ m

φ2α = [u⊗n, u].
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So θ is an allowable morphism

I
θ
−→ [ [u⊗n1 , u]⊗ · · · ⊗ [u⊗nm, u], [u⊗n, u] ]

or equivalently

[u⊗n1, u]⊗ · · · ⊗ [u⊗nm , u]
θ̄
−→ [u⊗n, u] ∈ AOpe1,

such that
(Aφ1)θ̄ ◦ (α1 ⊗ · · · ⊗ αm) = α

as morphisms in AOpe0.
For example for m = 2 consider

−+ −+ −+

−+

ᾱ1 =

−+

−+ −+

ᾱ2 =

−+

−+ −+ −+ −+

ᾱ =

so
φ2α1 = [u⊗ u⊗ u , u]

φ2α2 = [u⊗ u , u]

φ2α = [u⊗ u⊗ u⊗ u , u]

Then θ̄ may have the following graph in AOpe1

[ u⊗ u⊗ u , u ] ⊗ [ u⊗ u , u ]

[ u⊗ u⊗ u⊗ u , u ]
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The condition B is seen to be satisfied by the following diagram; we apply
φ1 to each component, and compose with α1 ⊗ α2:

+ + + + + + +− − − − − − −

− − − − −+ + + + +

=

− − − − −+ + + + +

This corresponds to a 3-opetope of the form

α2 α1 α

.

Note that we still do not need to label the edges of the graph since
Ope1 also only has identity arrows.

A morphism

θ
f
−→ θ′ ∈ Ope3

then has one of the following two forms

[ α1 ⊗ α2 , α ]

[ β1 ⊗ β2 , β ]

6 6

?

g1 g2 g

or
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[ α1 ⊗ α2 , α ]

[ β1 ⊗ β2 , β ]

g1

g
66

?
g2

where g1, g2, g are morphisms in Ope2. Since all morphisms in Ope2 are
isomorphisms, it follows that all morphisms in Ope3 are isomorphisms. In
fact, since Ope2 is equivalent to a discrete category, Ope3 is also, and
similarly Opek for all k ≥ 0; this is proved in Section B.4.

• k = 4

Finally we give an example of a 4-opetope γ ∈ Ope4, with

φ4γ = [θ1 ⊗ θ2 , θ]

where

+

+ +− − − −−

−− − −

θ̄1 =

+

+ +− − −−

−− −

θ̄2 =

+

+ +− − −−

−− −

+−−

−

θ̄ =

and we have

φ3θ1 = [ [u⊗3, u]⊗ [u⊗2, u] , [u⊗4, u] ] = [U3 ⊗ U2 , U4], say
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φ3θ2 = [ [u⊗2, u]⊗ [u⊗2, u] , [u⊗3, u] ] = [U2 ⊗ U2 , U3]

φ3θ = [U2 ⊗ U2 ⊗ U2 , U4].

Then γ̄ may be given by the following graph in AOpe2

σ1 σ2 σ3 σ4 σ5

[ U2 ⊗ U2 ⊗ U2 , U4 ]

[ U3 ⊗ U2 , U4 ] ⊗ [ U2 ⊗ U2 , U3 ]

?

6666

where each σi is a morphism in Ope2, that is, a permutation. We then
check condition B by the following diagram:

+ + + + + + + + + + +− − −−−− − − −−−

+ + + + + + +− − − −− −−

+ + + + + + +− − − −−−−

=

giving the composite θ as required. Note that the permutations σi appear
as permutations of the appropriate edges in the above diagram.

This corresponds to an opetope of the following form:
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?

B.4 Comparison with the multicategory approach

In [BD2], opetopes are constructing using symmetric multicategories. Di-
mensions are built up using the slicing process. We compare this process
with the use of closed categories as above.

B.4.1 The slice construction

Recall the slice construction for a symmetric multicategory. Let Q be a
symmetric multicategory. Then the slice multicategory Q+ is given by

• Objects: o(Q+) = eltQ

• Arrows: Q+(f1, . . . , fn; f) is given by the set of ‘configurations’ for
composing f1, . . . , fn as arrows of Q, to yield f .

Recall further that such a configuration for composing is given by a
labelled tree (T, ρ, τ) where the nodes give the positions for composing the
fi. So by Corollary B.2.9 we may restate this using allowable morphisms
in KC, where C = o(Q).

Let Q be a symmetric multicategory with category of objects C. Given
an arrow f ∈ Q(x1, . . . , xm;x) we write

φf = [x1 ⊗ · · · ⊗ xm, x] ∈ AC.

Then the slice multicategory Q+ is given as follows.

• objects o(Q+) = eltQ

• an arrow θ ∈ Q+(f1, . . . , fj; f) is an arrow

θ ∈ AC( I , [φf1 ⊗ · · · ⊗ φfj , φf ] )

such that composing the fi in this configuration gives f .

Lemma B.4.1. φ extends to a functor

φ : eltQ −→ AC.
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Proof. Let
f ∈ Q(x1, . . . , xm;x)

g ∈ Q(y1, . . . , yj; y).

Then eltQ(f, g) = ∅ unless m = j. If m = j then a morphism f
γ
−→ g is

given by a permutation σ ∈ Sm together with morphisms

ti : yi −→ xσ(i)

t : x −→ y

satisfying certain conditions. This specifies a unique allowable morphism

[x1 ⊗ · · · ⊗ xm, x] −→ [y1 ⊗ · · · ⊗ ym, y] ∈ AC

and we define φγ to be this morphism. This makes φ into a functor. �

We call φ the frame functor for Q. We now show how the slicing process
corresponds to moving one rung up the ‘ladder’.

Lemma B.4.2. Let Q be a symmetric multicategory with category of objects
C. Then the category eltQ+ is isomorphic to a full subcategory of the
comma category (I ↓ Aφ) and the frame functor for Q+ is given by

eltQ+ →֒ (I ↓ Aφ) −→ A(eltQ)

where the functors shown are the inclusion followed by the forgetful functor.

Proof. Write C1 = eltQ = o(Q+).
An object of eltQ+ is (θ, p) where p ∈ FC1

op × C1 and θ ∈ Q+(p).
Write

p = (f1, . . . , fm; f).

Then θ is an allowable morphism

I
θ
−→ Aφ[f1 ⊗ · · · ⊗ fm, f ]

that is, an object

( θ , [f1 ⊗ · · · ⊗ fm, f ] ) ∈ (I ↓ Aφ)

such that composing the fi according to θ results in f .
A morphism (θ, p) −→ (θ′, p′) in eltQ+ is a morphism p −→ p′ in

FC1
op × C1 such that a certain commuting condition holds. Such a mor-

phism is precisely an allowable morphism

[f1 ⊗ · · · ⊗ fm, f ] −→ [f ′1 ⊗ · · · ⊗ f
′
m, f

′] ∈ AC1

and the commuting condition is precisely that ensuring that this is a mor-
phism θ −→ θ′ in (I ↓ Aφ).

It is then clear that the frame functor is given by the inclusion followed
by the forgetful functor as asserted. �
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Corollary B.4.3. The category eltQ+ is the full subcategory of (I ↓ Aφ)
whose objects are all (θ, p) satisfying the following two conditions:

i) p has shape Xm for some m ≥ 0 so p = [f1 ⊗ · · · ⊗ fm, f ]

ii) the result of composing the fi according to θ is f .

If Q is itself a slice multicategory then we can state the condition (ii) in
the language of closed categories as well, since each fi is itself an allowable
graph.

So we now consider forming Q++, that is, the slice of a slice multicat-
egory. Let Q be a symmetric multicategory with category of objects C0.
We write

C1 = o(Q+)

with frame functor

φ1 : C1 −→ AC0

f ∈ Q(x1, . . . , xm;x) 7−→ [x1 ⊗ · · · ⊗ xm, x]

Also, we write
C2 = eltQ+

with frame functor

φ2 : C2 −→ AC1

α ∈ Q+(f1, . . . , fm; f) 7−→ [f1 ⊗ · · · ⊗ fm, f ]

Lemma B.4.4. Let θ be a configuration for composing α1, . . . , αj ∈ eltQ+ =
C2 expressed as an allowable morphism

I
θ
−→ [ φ2α1 ⊗ · · · ⊗ φ2αj , φ2α] ∈ AC1.

Then the result of composing the αi in this configuration is

(Aφ1)θ̄ ◦ (α1 ⊗ · · · ⊗ αj)

composed as morphisms of AC0.

Proof. By definition, each αi is a morphism in AC0 of shape

I −→ [ Xim1 ⊗ · · · ⊗Ximi
, X ],

so is a tree labelled in C0. These trees are composed by node-replacement
composition (see Section B.2.3) and the “composition graph” is given by θ̄.

�

Corollary B.4.5. An arrow θ ∈ Q++(α1,⊗ · · · ⊗, αj ;α) is precisely a mor-
phism

θ ∈ AC1( I , [φ2α1 ⊗ · · · ⊗ φ2αj , φ2α] )

such that
(Aφ1)θ̄ ◦ (α1 ⊗ · · · ⊗ αj) = α ∈ AC0
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Corollary B.4.6. eltQ++ is the full subcategory of (I ↓ Aφ2) whose objects
are all (θ, p) satisfying the following two conditions:

1) p has shape Xm for some m ≥ 0, so p = [α1 ⊗ · · · ⊗ αm;α] ∈ AC2

2) (Aφ1)θ̄ ◦ (α1 ⊗ · · · ⊗ αj) = α.

Finally we are ready to show that the opetopes constructed using sym-
metric multicategories correspond to those constructed in closed categories.

Corollary B.4.7. Let Q be the symmetric multicategory with just one ob-
ject and one (identity) morphism. Then for all k ≥ 0

o(Qk+) ∼= Opek

where Q0+ = Q.

Proof. For k ≤ 1 the result is immediate by Definition B.3.3. For k = 2
we use Corollary B.4.3 on Q+; the result follows since condition (ii) is
trivially satisfied. For k ≥ 3 we use Corollary B.4.6 on Q(k−3)+; the result
follow since the φ2 in the Corollary is φk−2 in the case in question. �

B.5 The category of opetopes

Recall that in Chapter 3 we defined the category O of opetopes. It is pos-
sible to restate this definition in the framework of Kelly-Mac Lane graphs
described in this Appendix; we copy the definition exactly, using the fact
that the bijection giving the formal definition of a tree gives the mates in
the corresponding Kelly-Mac Lane graph.

Although we do not give the construction explicitly here, we give some
examples of low-dimensional face maps. We use the example of a 3-opetope
as given in Section B.3.3.

For the 2-opetopes we have face maps

α1

α2

α

θ
q

-
1

s1

s2

t

together with the isomorphic cases.
For 1-opetopes we then have

s1, s2, s3, t : u −→ α1

s1, s2, t : u −→ α2

s1, s2, s3, s4, t : u −→ α
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but by considering the generating relations, here given by mates in the
graph θ, we have

s1s1 = s2t
s1s2 = ts2
s1s3 = ts3
s1t = tt
s2s1 = ts1
s2s2 = ts4;

note that sisj give the jth source of the ith source of θ.
For 0-opetopes we have in addition face maps

x −→ u

and the relations on composites

x −→ θ

are generated by relations on composites

x −→ αi

as well as by those on composites

u −→ θ.

For the former relations we are considering mates under graphs αi ∈
AOpe0, and for the latter, mates under the graph (Aφ1)θ̄ ∈ AOpe0. So
in fact we are considering, in total, all objects connected in the composite
graph

(Aφ1)θ̄ ◦ (α⊗ · · · ⊗ αm) ∈ AOpe1.

So we have

ts1s = s2s1s = s2s2t = ts4t
ts1t = s2s1t = s2tt = s1s1t = s1s2s = ts2s
ts2t = s1s2t = s1s3s = ts3s
ts3t = s1s3t = s1tt = ttt
ts4s = s2s2s = s2ts = s1s1s = s1ts = tts

Note that since

(Aφ1)φ̄ ◦ (α1 ⊗ · · · ⊗ αm) = α

the 0-cell face maps for θ are precisely those of the form tf where f is a
0-cell face map of α = t(θ). This reflects the fact that, when 2-opetopes
are composed along 1-opetopes, the composite is formed by ‘deleting’ the
boundary 1-opetopes, but no 0-cells are deleted. This result generalises to
k-opetopes, but we do not prove this here.
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Calculations for Section 5.2.4

In this appendix we perform the calculations deferred from Section 5.2.4.
However, we first introduce some shorthand to deal with some of the more
unwieldy parts of the algebra.

C.1 Shorthand for calculations

The following shorthand is used for calculations in an opetopic 2-category.

i) Since 3-niche occupants are unique, we may omit the target of a 3-cell
without ambiguity. We then write an equality to indicate that the
3-cells have the same target. For example we might write

β
α =

γ
δ

meaning

β
α

≡〉 θ

and

γ
δ
≡〉 θ

.
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ii) Recall that, by uniqueness of 3-niche occupants, we have associativity
of 2-cell composition. So we may substitute ‘equal’ (in the above
sense) 2-cell composites in part of the domain of another 3-cell. For
example, given

β
α =

γ
δ

and a 3-cell

β
α

we have

β
α =

γ
δ

.

This is shorthand for the following

β
α

≡〉 φ △ φ ≡〉 θ

β
α

≡〉 θ

and

γ
δ
≡〉 φ △ φ ≡〉 θ
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γ
δ

≡〉 θ

.

iii) Recall that 2-cell identities act as identities on k-ary 2-cells for all k
(not only 1-ary 2-cells), for example

- ≡〉 1

∇

1 α ≡〉 θ

α ≡〉 θ

so we have α = θ, that is

α1
= α

.

iv) Note that if u is any universal 2-cell, we have

u

θ
=

u

φ ⇒ θ = φ

by definition of universality. This also holds if θ and φ are 2-cell
composites, for example

θ = α
β

⇒ α
β

= φ

and

α
β

= γ
δ

⇒ α
β

= γ

δ .
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Furthermore, this holds if u is a composite of universals, since a com-
posite of universals is universal, for example if u1 and u2 are universal
then

u1

α
u2 =

u1

β
u2 ⇒ α = β

and in particular

u

α
= u ⇒

α
=

1

C.2 Calculations

Throughout this section, we use the notation and constructions exactly as
given in Section 5.2.4.

Lemma C.2.1. i) 1g ∗ 1f = 1gf

ii) (β2 ◦ β1) ∗ (α2 ◦ α1) = (β2 ∗ α2) ◦ (β1 ∗ α1) (middle 4 interchange)

Proof.

i) We have

∼ =
∼ 11

=
∼

1 ∗ 1

by the action of 1 and definition of ∗, so

1 ∗ 1
=

1

as required.

ii) Given
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f1

f2
α1

f3

α2

g1

g2 β1

g3

β2

we write

f1 g1

g1f1

u1

,

f2 g2

g2f2

u2

,

f3 g3

g3f3

u3

for the chosen universal 2-cells as shown. Then we have

β2u3
α2

α1
β1

=

β2 ◦ β1u3
α2 ◦ α1

=

u1

(β2 ◦ β1) ∗ (α2 ◦ α1)

by definition, but also

β2u3
α2

α1
β1

=

β1
α1 u2

β2 ∗ α2

=

u1

(β2 ∗ α2) ◦ (β1 ∗ α1)

by definition, hence the result.

�

Lemma C.2.2. a is natural

Proof. Given 2-cells

f1

f2

α

g1

g2

β

h1

h2

γ

we need to show that the following naturality square commutes

(h2g2)f1

(h1g1)f1 h1(g1f1)

h2(g2f2)

-

-
? ?

(γ ∗ β) ∗ α γ ∗ (β ∗ α)

a

a
.
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We have

α

β

γ

a

=

α

a

γ ∗ β

=

a

(γ ∗ β) ∗ α

‖

α

β

γ

=

γβ ∗ α

=

γ ∗ (β ∗ α)

a

so by uniqueness we have

(γ ∗ β) ∗ α

a

=
a

γ ∗ (β ∗ α)

as required. �

Lemma C.2.3. r is natural

Proof. Given a 2-cell

A B

f1

f2

α

we need to show that the following naturality square commutes

f2 ◦ IA

f1 ◦ IA f1

f2

-

-
? ?

α ∗ 1 α

r

r
.

Writing chosen composites as

IA f1

f1.IA

u1

,

IA f2

f2.IA

u2
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we have

|

.

u2

r
α

=

|

.

r

u1

α ∗ 1

‖

α
1

= 1
α

=

|

.

u1

r
α

so by uniqueness

α ∗ 1
r

= r
α

as required. �

Lemma C.2.4. a, l and r satisfy the axioms for a bicategory.

Proof.

i) associativity pentagon

=
a

=
a
a

‖

a =

a ∗ 1

=
a

a ∗ 1

= a

a
a ∗ 1

=

1 ∗ α
a

a ∗ 1

so

a
a

((kh)g)f

k(h(gf))

= 1 ∗ a
a

a ∗ 1
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as required.

ii) unit triangle

r

⇓

.

=

⇓

.

r ∗ 1

‖

1 =
1

=

⇓

.

l
=

⇓

.

1 ∗ l

=

⇓

.

a
1 ∗ l

so

r ∗ 1
= a

1 ∗ l

as required.

�

Lemma C.2.5. φ is natural.

Proof. Given 2-cells

f1

f2

α

g1

g2

β

we need to show that the following diagram commutes

Fg2 ◦ Ff2

Fg1 ◦ Ff1 F (g1 ◦ f1)

F (g2 ◦ f2)

-

-
? ?

Fβ ∗ Fα F (β ∗ α)

φg1f1

φg2f2

.
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We write the chosen universal 2-cells as

f1 g1

g1.f1

v1

,

f2 g2

g2.f2

v2

,

Ff1 Fg1

Fg1.Ff1

u1

,

Ff2 Fg2

Fg2.Ff2

u2

so

u1

φ
= Fv1

,

u2

φ
= Fv2

.

We have

u2Fα Fβ

φg2f2

=
u1

Fβ ∗ Fα
φg2f2

in X ′, and in X we have

v2α β
=

v1

β ∗ α

so applying F , we have, since F is strictly functorial on 2-cells,

Fv2Fα Fβ
=

Fv1

F (β ∗ α)

=
u1

φg1f1

F (β ∗ α)

‖

u2Fα Fβ

φg2f2

=
u1

Fβ ∗ Fα
φg2f2

so by uniqueness we have
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Fβ ∗ Fα

φg2f2

= φg1f1

F (β ∗ α)

as required. �

Lemma C.2.6. (F, φ) satisfies the axioms for a morphism of bicategories.

Proof. We have in X

f

g

h∼
∼
a

=
∼
∼

so applying F , we get in X ′

Ff

Fg

Fh

Fa
φ

∼
∼φ

=

∼φ

φ
∼

‖

∼

φ
φ ∗ 1
∼

Fa

‖

∼

1 ∗ φ
a

∼

φ

as required. For r we have in X

∼

r

|

.
ι

=
1

so applying F , we get in X ′
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|

.

φ Ff∼

φ
Fr

= Ff

Ff

⇓1
=

Ff
∼

|

.

r

‖

∼

1 ∗ φ
φ

Fr

as required. The axiom for l holds similarly. �
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