
Terminal coalgebras

Eugenia Cheng and Tom Leinster

University of Sheffield and University of Glasgow

March 2008

1.



Plan

1. Introduction to terminal coalgebras

2. Some theory of terminal coalgebras

3. Weak n-categories

4. Operads

5. Trimble-like n-categories

6. Trimble-like ω-categories via terminal
coalgebras

2.



Plan

1. Introduction to terminal coalgebras

2. Some theory of terminal coalgebras

3. Weak n-categories

4. Operads

5. Trimble-like n-categories

6. Trimble-like ω-categories via terminal
coalgebras

2.



Plan

1. Introduction to terminal coalgebras

2. Some theory of terminal coalgebras

3. Weak n-categories

4. Operads

5. Trimble-like n-categories

6. Trimble-like ω-categories via terminal
coalgebras

2.



Plan

1. Introduction to terminal coalgebras

2. Some theory of terminal coalgebras

3. Weak n-categories

4. Operads

5. Trimble-like n-categories

6. Trimble-like ω-categories via terminal
coalgebras

2.



Plan

1. Introduction to terminal coalgebras

2. Some theory of terminal coalgebras

3. Weak n-categories

4. Operads

5. Trimble-like n-categories

6. Trimble-like ω-categories via terminal
coalgebras

2.



Plan

1. Introduction to terminal coalgebras

2. Some theory of terminal coalgebras

3. Weak n-categories

4. Operads

5. Trimble-like n-categories

6. Trimble-like ω-categories via terminal
coalgebras

2.



1. Introduction to terminal coalgebras

A coalgebra for an endofunctor F : C −→ C

consists of

• an object A ∈ C

• a morphism

FA

A

��

satisfying no axioms.
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Given a set M we have an endofunctor
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The terminal coalgebra is given by

the set MN of “infinite words” in M

(m1, m2, m3, . . .)
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Example 2

Let F be the free monoid monad on Set.

A coalgebra for this is a function

A
f−→ FA

a 7→ (a1, a2, . . . , an)

The terminal coalgebra is given by

the set Tr∞ of infinite trees of finite arity
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then f is an isomorphism.
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2. Some theory of terminal coalgebras

Theorem (Adámek)

We can construct the terminal coalgebra as the
limit of the following diagram:

1F1F 21F 31· · · ! //F ! //F 2! //F 3! //

provided there is a terminal object 1, the limit exists, F preserves it
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A V-graph A consists of

• a set obA

• for all x, y ∈ obA an object A(x, y) ∈ V
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Example 3

There is an endofunctor

Cat −→ Cat

V 7→ V-Gph

We write GSet or ω-Gph

and note that Lambek’s Lemma holds

ω-Gph ∼= (ω-Gph)-Gph.
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• F1 = 1-Gph ∼= Set
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(
(n− 1)-GSet

)
-Gph = n-GSet
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10-GSet1-GSet2-GSet· · · ! ////////
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2. Some theory of terminal coalgebras

Using Adámek’s construction

• For each n we have a category n-GSet of
n-truncated globular sets

• F1 = 1-Gph ∼= Set

• F n
1 =

(
(n− 1)-GSet

)
-Gph = n-GSet

The limit diagram becomes

10-GSet1-GSet2-GSet· · · ! ////////

where each morphism here is truncation.
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2. Some theory of terminal coalgebras

Example 4 (Simpson)

There is an endofunctor

SymMonCat −→ SymMonCat

V 7→ V-Cat

The terminal coalgebra is given by

the category ω-Cat of strict ω-categories.

Again, we note that Lambek’s Lemma holds:

ω-Cat ∼= (ω-Cat)-Cat.
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2. Some theory of terminal coalgebras

Idea

This gives us a way of constructing infinite
versions of gadgets whose finite versions we can
construct simply by induction.

Aim

—to apply this to Trimble’s version of weak
n-categories.
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3. Weak n-categories

For strict n-categories we can just

enrich in (n− 1)-Cat

n-Cat := ((n− 1)-Cat)-Cat.

For Trimble’s weak n-categories we

• enrich in (n− 1)-Cat, and

• weaken the composition using an operad

What does “weaken” mean?
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3. Weak n-categories

A bicategory has

• 0-cells ·
• 1-cells · ·//

• 2-cells · ·��AA��

There are various kinds of composition:

· · ·// // . .��GG//��

��
. . .��

DD��
��
DD��
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3. Weak n-categories

Axioms in a bicategory

Unlike in a strict 2-category we do not have

(hg)f = h(gf).

That is, given a composable diagram

a b c d
f // g // h //

we have two composites.
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3. Weak n-categories
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3. Weak n-categories

Idea

We will keep track of all these composites using
operads.

27.



4. Operads

Let V be a symmetric monoidal category.

An operad P in V is given by

• for each integer k ≥ 0 an object P (k) ∈ V

• composition morphisms

P (k)⊗P (m1)⊗· · ·⊗P (mk) −→ P (m1+· · ·+mk)

satisfying unit and associativity axioms.

28.
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4. Operads

In pictures:
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4. Operads

Typical examples of V are

• Top

• sSet

• Cat

In all our examples, ⊗ will be ×.
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4. Operads

Algebras for operads

An algebra for an operad P in V is given by

• an underlying object A ∈ V

• for all k ≥ 0 an action

P (k)× Ak −→ A

interacting well with operad composition.

31.



4. Operads

Algebras for operads

An algebra for an operad P in V is given by

• an underlying object A ∈ V

• for all k ≥ 0 an action

P (k)× Ak −→ A

interacting well with operad composition.

31.



4. Operads

Algebras for operads

An algebra for an operad P in V is given by

• an underlying object A ∈ V

• for all k ≥ 0 an action

P (k)× Ak −→ A

interacting well with operad composition.

31.



4. Operads

Algebras for operads

An algebra for an operad P in V is given by

• an underlying object A ∈ V

• for all k ≥ 0 an action

P (k)× Ak −→ A

interacting well with operad composition.

31.



4. Operads

Algebras for operads

An algebra for an operad P in V is given by

• an underlying object A ∈ V

• for all k ≥ 0 an action

P (k)× Ak −→ A

interacting well with operad composition.

31.



5. Trimble-like weak n-categories

Idea

A (V, P )-category will be a cross between

• a V-category, and

• a P -algebra.

The underlying data is a V-graph

but composition is like a P -algebra action.
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5. Trimble-like weak n-categories

• Composition in an ordinary V-category:

A(ak−1, ak)× · · · × A(a0, a1) −→ A(a0, ak)

• P -algebra action:

P (k)× A× · · · × A −→ A

• Composition in a (V, P )-category:

P (k)×A(ak−1, ak)×· · ·×A(a0, a1) −→ A(a0, ak)
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5. Trimble-like weak n-categories

Definition

A (V, P )-category consists of

• an underlying V-graph A

• composition maps

P (k)×A(ak−1, ak)×· · ·×A(a0, a1) −→ A(a0, ak)

interacting well with the operad structure of P .

34.



5. Trimble-like weak n-categories

Definition

A (V, P )-category consists of

• an underlying V-graph A

• composition maps

P (k)×A(ak−1, ak)×· · ·×A(a0, a1) −→ A(a0, ak)

interacting well with the operad structure of P .

34.



5. Trimble-like weak n-categories

Definition

A (V, P )-category consists of

• an underlying V-graph A

• composition maps

P (k)×A(ak−1, ak)×· · ·×A(a0, a1) −→ A(a0, ak)

interacting well with the operad structure of P .

34.



5. Trimble-like weak n-categories

Definition

A (V, P )-category consists of

• an underlying V-graph A

• composition maps

P (k)×A(ak−1, ak)×· · ·×A(a0, a1) −→ A(a0, ak)

interacting well with the operad structure of P .

34.



5. Trimble-like weak n-categories

We can then build weak n-categories like this:

• put 0-Cat = Set

• pick a suitable operad P0 ∈ 0-Cat

• put 1-Cat = (0-Cat, P0)-Cat

• pick a suitable operad P1 ∈ 1-Cat

• put 2-Cat = (1-Cat, P1)-Cat

• ...

But what operads Pn are we going to use?

35.
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5. Trimble-like weak n-categories

Trimble’s method

• start with just one operad E ∈ Top

• take each Pn(k) to be the fundamental
n-groupoid of E(k)

So instead of picking one operad Pn for each n,
we just have to construct for each n

Πn : Top −→ n-Cat

and this turns out to be easy by induction.

36.
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5. Trimble-like weak n-categories

Trimble’s operad E

Each E(k) is the space of continuous
endpoint-preserving maps

[0, 1] −→ [0, k].

Crucial properties of E:

• each E(k) is contractible

• E has a natural action on path spaces

E(k)×X(xk−1, xk)× · · · ×X(x0, x1) −→ X(x0, xk)

37.
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5. Trimble-like weak n-categories

The fundamental n-groupoid functor

Let X be a space.

We define an n-category ΠnX as follows:

• its objects are just the points of X

• (ΠnX)(x, y) := Πn−1
(
X(x, y)

)
• composition follows from the action of E on

path spaces

38.
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5. Trimble-like weak n-categories

Induction for Π in general

Given a finite product preserving functor

Π : Top −→ V

we induce a functor

Π+ : Top −→ V-Cat

“do Π locally on the hom objects”
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6. Trimble-like weak ω-categories

Idea

• a strict ω-category is a globular set such that
each n-truncation is a strict n-category

• however if we truncate a weak ω-category we
do not get a weak n-category

—we get something incoherent at dimension n

So we need to build weak ω-categories from

“incoherent n-categories”

41.
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6. Trimble-like weak ω-categories

So we expect to take the following limit

10-iCat1-iCat2-iCat· · · ! ////////

where each morphism is truncation.

Question: can we get this as

1F1F 2
1F 3

1· · · ! //F ! //F 2! //F 3! //

?

43.
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6. Trimble-like weak ω-categories

We work in a category E whose objects are
pairs (V, Π) where

• V is a category with finite products

• Π is a functor Top −→ V preserving finite
products.

Morphisms are the obvious commuting triangles.

We consider the endofunctor

F : E −→ E

(V, Π) 7→
(
(V, ΠE)-Cat, Π+

)

44.
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6. Trimble-like weak ω-categories

So the limit

1F1F 2
1F 3

1· · · ! //F ! //F 2! //F 3! //

becomes

10-iCat1-iCat2-iCat· · · ! ////////

The terminal coalgebra is indeed the limit we were

looking for.
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