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Higher-dimensional categories are like a vast mountain that many
people are trying to conquer. Some intrepid explorers have made the
ascent, each taking a different route and each encountering different
hazards. Each has made a map of his route, but do we know how all
these maps fit together? Do we know that they fit together at all? In
fact, are we even climbing the same mountain?

This work is an illustrated guide book to the world of higher-
dimensional categories. A map would be more detailed and precise.
An encyclopedia would be more comprehensive. Our aim is neither
rigour nor completeness. Our aim is to provide would-be visitors
with a sense of what they might find on arrival; to give them an idea
of what landmarks to look out for; to warn them of the hazards of
the territory; to introduce them to the language of the place; to whet
their appetite for exploring by themselves.

To this end, we adopt an informal and friendly tone. We in-
clude enough detail to give visitors their bearings but not so much
that they need a magnifying glass to find what they’re looking for.
And, most importantly, we provide copious pictures to illustrate our
descriptions.

Inasmuch as this is a guide book, we will assume that the reader is
already interested in visiting. This is not an advertising campaign.
However, we hope that, with the appearance of a guide book, more
people will consider visiting. . .
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Preface

One person’s clear mental image is another person’s intimidation.
W. Thurston

We can regard the many definitions of n-category as an obstacle or a treasure-
trove. In fact, it should always be helpful to have many different views of a
structure — each viewpoint gives us greater scope for understanding. However,
it also gives us a greater scope for being baffled.

The aim of this work is to promote understanding of the various definitions.
We too have been thoroughly baffled, but have maintained a belief that each
definition can look natural if viewed from the appropriate angle. Our general
mission, then, is demystification. We will take each definition in turn and find
a way of making everything seem as intuitive as possible. Of course, everyone
arrives with different intuitions and we also arrived with our own, but we have
tried to find out what the appropriate intuitions are that make each idea seem
natural. This has involved shifting our mind-set around as we move between
different theories, a sort of mental gymnastics that we feel is an essential warm-
up for the exercise of understanding.

This work grew out of a very real situation: the second named author asked
the first for an introduction to the various definitions of n-category, in advance
of the IMA n-categories workshop in June 2004. A short discussion would not
suffice, and we embarked on a journey of discovery in a series of about twenty
afternoons. We made detailed notes of everything explained and, motivated by
the impending workshop, expanded them into the present form. Our aim here
is just as it was when we first sat down with our coffees: to shed as much light
on the definitions as we can. These notes are by-and-large a record of our dis-
cussions and as such we lay no claims to completeness; we have simply included
everything we found helpful along the way. We have chosen intuition over rigour
wherever a choice seems to be required. This often means “waffle” over “conci-
sion” as we have aimed towards readable prose rather than elegant mathematical
exposition that demands hours (or days) of reading and re-reading, sentence by
sentence.



viii CONTENTS

Prerequisites

We have tried to assume very little about our readers. Of course, we can’t
claim there are no prerequisites, but we can unequivocally state that we are only
assuming the knowledge of a first-year graduate student: one of the authors!
That is, since this is essentially a record of our discussions, the background
we assume is essentially whatever we had in common at the start. This can
be quickly summed up as: categories, functors, natural transformations and a
little about limits and adjunctions. Where further background theory comes
into a definition we have given some kind of account of it, even if only an
impressionistic one; or else we have decided that a reasonable understanding of
the definition can be reached without it.

In our discussions we took Leinster’s invaluable survey paper [69] as a start-
ing point, and the present work might be treated as a companion to it. We
often make reference to its notation and terminology to help the reader who is
proceeding in this fashion. However, the present work is also intended to stand
alone.

Structure

We have included every definition to be presented at the IMA workshop. We
have tried to keep each chapter self-contained and as such the ordering of the
chapters is somewhat arbitrary. The idea is that it should not be necessary to
read this guide book from start to finish. However we do include (often informal)
comments relating or comparing notions in different chapters, but have tried to
make them symmetric — we might ask the reader to “recall” something from
a chapter that happens to occur later in our arbitrary ordering. The exception
is of course the introduction; also, Chapters 2 (Penon) and 3 (Batanin and
Leinster) are closely linked.

Acknowledgements

We would like to thank John Baez, Martin Hyland and Tom Leinster for their
ongoing support and inspiration. We would also like to thank John Baez and
Peter May for organising the IMA workshop, and for creating it so deliberately as
a forum for interactive demystification. The extent to which this has motivated
this work cannot be understated.



Chapter 1

Introduction

Weak higher-dimensional categories are difficult to define because of the words
“weak” and “higher-dimensional”. One or the other would be fine — weak
low-dimensional categories, strict higher-dimensional categories — but together
they produce more expressive power than we can easily describe.

The difficulty is in getting a structure that is weak enough to be “expressive”,
but coherent enough to be “sensible”. There are many ways of interpreting this
ideal and yet more ways of realising it. In this introduction we outline ways in
which definitions of n-category can differ. We broadly think of these differences
as falling into two classes:

• ideological: different ways of interpreting the ideal

• technical: different ways of realising the ideal.

Since this whole subject involves generalising something well-understood,
we will begin with a discussion about the different possible starting points for
generalisation. We then highlight more specifically some of the ways in which
definitions of n-category can differ; we will use these as points of reference
when we move onto discussing each definition in detail. The definitions and
their various characteristics are summed up in the form of several tables in the
Appendix.

1.1 Starting points for generalisation

If someone has stepped out into the unknown, a good way to start
looking for them is to go to the place where they were last seen.

For any mathematical structure there are likely to be many equivalent ways
of describing it. We can each have our personal favourite, which is fine until
we come to generalise. Generalisations of a structure can look very different
depending on which particular description of the structure we started with.
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The generalisation of categories to weak higher-dimensional categories is
a prime example of this phenomenon. Even the (relatively) simple structure
of an ordinary category can be thought of in very different ways. For the 1-
dimensional case it might just be a matter of personal preference, but if we
generalise into n dimensions those innocuous differences are likely be magnified n
times. So it’s important to know where we started, in order better to understand
where we end up.

In this section we will present ordinary categories in three different ways.
These lead to three different general directions for defining n-categories, and we
will broadly classify the definitions along these lines.

1.1.1 Categories I: graphs with structure

Definition 1 A category is given by

i) data: a diagram C1

s //
t

//C0 in Set

ii) structure: composition and identities

iii) properties: unit and associativity axioms.

The data C1

s //
t

//C0 is also known by the (over-used) term “”. We can

interpret it as a set C1 of arrows with source and target in C0 given by s, t.
This viewpoint leads to the following generalisation

Definition 1-n A strict n-category is given by

i) data: a diagram Cn

sn //
tn

//Cn−1

sn−1 //
tn−1

// · · ·
s2 //
t2

//C1

s1 //
t1

//C0 in Set

ii) structure: composition and identities

iii) properties: strict associativity and interchange axioms.

We have to be a bit more careful about our generalised data: we would like
our cells to look like this

0-cells •

1-cells • // •

2-cells • •
��
DD��

not

• •//

• •//
��

3-cells • •
��
DD

�& x�
_*4
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so we need to impose conditions on the source and target maps to ensure that
for any cell its source and target match up properly, unlike this one

• •//

• •//
��

So formally, we need

sk−1sk = sk−1tk

tk−1sk = tk−1tk

for all k. These are called the “globularity” conditions (ensuring that the cells
look like “globs”) and the resulting data is called a globular set.

To generalise this approach for weak n-categories the issue is then to work
out how to weaken the coherence demands of the strict n-category structure.
This sort of approach is taken by Penon, Batanin and Leinster.

Remark Definition 1 above yields an abstract account of categories as al-
gebras for the “free category” monad on the category Grph of graphs (see
Section 2.4 for details). This leads to the idea of defining n-categories as al-
gebras for an appropriate monad on globular sets, and this is what the above
authors do.

1.1.2 Categories II: objects and morphisms

Definition 2 A category is given by

i) objects: a set C0

ii) hom-sets: for all a, b ∈ C0, a set C(a, b)

iii) composition: for all a, b, c ∈ C0 a function

C(a, b)× C(b, c) −→ C(a, c)
(f, g) 7→ g ◦ f

iv) identities: for all a ∈ C0 a function

{∗} −→ C(a, a)
∗ 7→ 1a

satisfying associativity and unit axioms.

Here we interpret the sets C(a, b) as sets of morphisms of the form a −→ b.
This viewpoint leads to the following generalisation:
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Definition 2-n A strict n-category is given by

i) objects: a set C0

ii) hom-(n− 1)-categories: for all a, b ∈ C0, an (n− 1)-category C(a, b)

iii) composition: for all a, b, c ∈ C0 an (n− 1)-functor

C(a, b)× C(b, c) −→ C(a, c)

iv) identities: for all a ∈ C0 an (n− 1)-functor

1 −→ C(a, a)

where 1 is the terminal (n− 1)-category

satisfying associativity, unit and interchange axioms.

This gives a strict n-category as a “category enriched in (n− 1)-categories”.
This means, for a start, that for any a, b ∈ C0, the morphisms a −→ b form an
(n− 1)-category C(a, b) which we can interpret as having

0-cells • // • i.e. 1-cells of C

1-cells • •
��
DD�� i.e. 2-cells of C

2-cells • •
��
DD

�& x�
_*4 i.e. 3-cells of C

So the composition functor gives:

•
f // •

g // • � // •
g◦f // •

• •
��
DDα�� ••

��
DDβ��

� // • •
��
DDβ∗α��

• •
��
DD •

��
DD

�& x� �& x�
_*4 _*4 � // • •

��
DD

�& x�
_*4

There is a general definition of “categories enriched in V” for suitable V (see
Section 8.1.2) and a well-developed theory of such enriched categories [55] but
everything happens strictly. For generalisation to weak n-categories, the issue
in this approach is then to work out how to weaken the coherence demands in
the definition of enrichment. This sort of approach is taken by Trimble and May
explicitly, and by Tamsamani and Simpson less explicitly.
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1.1.3 Categories III: nerves

Every category has an underlying simplicial set called its nerve. Conversely, a
simplicial set arises as the nerve of a category if and only if it satisfies the “nerve
condition”. In fact we can use this characterisation as a definition:

Definition 3 A category is a simplicial set satisfying the “nerve condition”.

Essentially, the nerve condition asserts that the m-cells give m-fold compo-
sition in an associative way. This leads to the following generalisation due to
Street:

Definition 3-n A strict n-category is a simplicial set satisfying the “n-nerve
condition”

This n-nerve condition involves some extremely intricate (“magical”) combina-
torial arguments about sets of indices. Once this is done, the move to the weak
case is child’s play (it is done by deleting the word “unique” from an existence
condition). This is Street’s approach; he has expressed the strict case in a form
that makes generalisation easy.

We might wonder if we can take a “nerve-like” approach but avoid the intri-
cate combinatorics. One way of doing this is to build in some more information
to the underlying data, by using different “shapes of cell”. This sort of approach
is taken by the Joyal, Tamsamani, Simpson and the Opetopic. We will discuss
the issue of cell shape in the next section.

1.2 Key points of difference

In this section we will highlight some of the key points of difference we encounter
in the various definitions.

1.2.1 The Data-Structure-Properties (DSP) trichotomy

We begin with one of the more difficult issues to articulate, and one that causes
the most difficulty when it comes to proving comparison theorems. We can
think of any mathematical definition in terms of

i) underlying data, equipped with

ii) certain extra structure, satisfying

iii) some properties.

For example a group is given by

i) an underlying set, equipped with

ii) a binary operation, identity and inverses, satisfying
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iii) some axioms.

We will pompously call this the Data-Structure-Properties (DSP) trichotomy.
Now, some differences in definitions arise from the question of where the var-

ious components of n-category are given, with respect to this trichotomy. We
already see a difference in the above definitions of category: the “graph” defini-
tion specifies composition as a piece of additional structure where the “nerve”
definition uses the property of “being able to extract coherent composition from
the given data”. It doesn’t make a serious difference for ordinary categories,
but becomes more serious as we generalise/weaken.

We can illustrate this by considering “weakening” an associativity axiom:

(hg)f = h(gf) becomes (hg)f ∼= h(gf).

Now “(hg)f is equal to h(gf)” is reasonably thought of as a property, and “(hg)f
is isomorphic to h(gf)” is also a property, but as soon as we demand a specified
isomorphism

(hg)f
∼
−→ h(gf)

it has become a piece of structure. Where trichotomies don’t match up, com-
parisons between theories become much technically harder.

The DSP question is closely related to questions of “algebraic vs non-algebraic”
and cell shape.

1.2.2 Algebraic vs non-algebraic

Some definitions specify composition and constraints uniquely, where others just
assert that they “exist”. This can be thought of as the difference between being
algebraic (specifying things uniquely) and non-algebraic. If it seems strange
to consider composition that is not uniquely specified, consider the example of
1-cell composition in a bicategory.

In a bicategory, 1-cell composition is not strictly associative, so there is not
a unique way composing a string of three composable 1-cells:

a b c d
f // g // h //

although there is a unique composite of any composable pair. Some definitions
of n-category don’t specify unique composites at all ; instead, “exhibiting a
composite” is a property of certain cells in the theory, and we just demand that
enough of those structure-giving cells exist.

Algebraic structures might be thought of as being easier to calculate with,
as they actually give the crucial pieces of information we need rather than just
asserting their existence. However, one curiously convenient feature of non-
algebraic approaches is that the whole issue of coherence constraints pretty
much vanishes. If we don’t have unique composites it doesn’t even make sense
to write down “(hg)f” and “h(gf)”, so we can’t ask if they are equal, isomorphic
or anything else. We see that, in a way, this coherence issue only arises once we
start choosing specified composites.
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An algebraic approach is taken by Penon, Batanin, Leinster, Trimble and
May; non-algebraic by Street, Simpson, Tamsamani and the Opetopic.

Remark on bias There is also the related issue of bias. Composition is called
biased when some composites are specified and not others; typically nullary (i.e.
identities) and binary composites might be used to generate the others, as with
the case of classical bicategories. Unbiased composition specifies composites for
all arities. This might be seen as the opposite extreme of specifying none at all.

1.2.3 Cell shape

The underlying shapes of cells is one of the most basic and evident differences
between definitions. However, although it appears to occur at the data level it
causes (or is caused by) much more far-reaching differences. The point is that
different cell shapes are invoked in order that cells might play a wider role than
just “being cells”. That is, differences in cell shape often belies differences in
the role that cells play in the structure.

• •CC
��

��

Globular

• •

•

// ��
44

44
44

44DD







 ��

Simplicial

•

•

• •

•

•

OO

AA���

//

��:
::

��//
��

Opetopic

The most basic cell shape is the globular shape. The rule of thumb is that
globular cells play no role except “being cells”; other shapes of cells are needed
if they are to be used for, say, giving composition. This is a feature of what we
call the “nerve-like” approaches (Street, Opetopic, Joyal, Simpson/Tamsamani),
and we will see that these are the ones taking non-globular cell shapes.

Remark In the nerve-like definitions, the data for an n-category is a presheaf

A : Σop −→ Set.

where Σ is the category of “shapes” for the theory in question. The functor A
is then thought of as giving us, for each shape, a set of cells of that shape. The
morphisms in the category Σ give us the clues as to how we might interpret the
“shapes” as actual geometrical shapes.

1.2.4 Weak n-categories or n-weak categories?

As we said at the beginning, the difficulty is in making something both weak
and higher-dimensional. In generalising from ordinary categories to weak n-
categories, we could:

• weaken the structure first, and then increase dimensions, or
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• increase dimensions strictly, and then weaken the structure.

We have the following schematic diagram:

strict
low-dimensional

categories

weak
low-dimensional

categories

strict
higher-dimensional

categories

weak
higher-dimensional

categories

weaken //

build
dimensions

��

weaken
//

build
dimensions

��

The bottom left route is taken by Street, Penon, Batanin, Leinster and Joyal.
The top right is taken by Trimble, May, Simpson, Tamsamani and the Opetopic.
A technical way of thinking about it is that the top right route is inductive;
one consequence of it is that we can’t reach ω-categories in this way, only n-
categories for finite n. We will not dwell much on this difference, and will
sometimes say “n-category” even when the possibility of ω is there.

1.2.5 Beheading vs headshrinking

Some definitions include in their data k-cells for all k, not just k ≤ n. The
idea to assert that, for dimensions greater than n, the structure has “shrunk”
to being trivial, in some suitable sense. Other definitions actually chop off the
data at n dimensions. Those definitions whose cells play a wider role than just
“being cells” are likely to need cells of higher dimensions than n, since in those
cases

• structure on k-cells is given by (k + 1)-cells, with

• properties given by (k + 2)-cells.

So in order to give structure (such as composition) on n-cells in such a theory,
(n+1)-cells will be required, and beheading the structure is therefore too violent.

1.2.6 Conclusion

The definitions and their features as discussed above are collected in table form
in the Appendix. We must stress that in highlighting the above differences we
are not trying to suggest that the differences between definitions are irrecon-
cilable. On the contrary, it is our view that understanding differences is an
important part of understanding similarities.



Chapter 2

Penon

2.1 Introduction

We have chosen to start with the definition of Penon as we find it the most
direct, invoking little complicated machinery. Readers who are unfamiliar with
monads may disagree, but we include a crash course for their benefit at the end
of this chapter. The definition was given in [86] and takes the following form:

An n-category is an algebra for a certain monad on the category
RefGSet of reflexive globular sets.

The starting point is:

An n-category should have

• cells of each dimension, with a suitable source and target of the
dimension below

• binary composition at all dimensions

• identities

satisfying some weak associativity and unit “conditions”.

These weak conditions actually take the form of “mediating cells” giving higher
morphisms between certain composites. The composites that need to be related
in this way are those that would have been equal in a strict setting.

In a strict n-category, we can take a pasting diagram of cells and compose
them in any order we like—the result will be the same. To make a weak n-
category, we are going to “stretch out” a strict n-category a bit, so that there
is a bit of “distance” in between these composites done in different orders—
but not too much. And it shouldn’t be empty space in between; they must be
connected by a suitable mediating cell.

It must be said that this definition can look very unintuitive if presented
in its most concise form, for example as in [69]. In particular the so-called
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“mysterious category Q” does not look so mysterious in Penon’s original paper,
where it is reached in two stages rather than plucked suddenly from thin air.

In fact, approached from the right direction, this definition can be one of the
most intuitively straightforward of the definitions — provided one is comfortable
with the idea of algebras for a monad. Of course, as with all the definitions,
it is important to start from the right place in order to see how a construction
is “natural”. We end this chapter with an introduction to monads and their
algebras, in Section 2.4.

Finally we note that there is a natural “non-reflexive” variant of Penon’s
definition which we discuss in Section 2.3.4; it seems that the original “reflexive”
version gives a notion of ω-category that is a little stricter than we would aim
for in general, but this can be fixed by using the non-reflexive version instead.

2.2 Intuition

We begin by thinking very naively about what a weak ω-category should look
like, in the spirit of the “graph with structure” type of definition (Section 1.1.1).
We might start with

i) globular cells of each dimension,

ii) identity cells: for every k-cell α a (k + 1)-cell iα: α −→ α even if we don’t
know yet how these cells are going to behave,

iii) binary composition: we can compose k-cells along boundary p-cells, for
0 ≤ p < k. We call this “p-composition” and write α ◦p β. The case k = 3
is depicted below.
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k=3

���& x�

_*4 _*4• •
��
EE 2-composition or

composition along
a bounding 2-cell

�& x�
_*4

�' w�

_*4
• •

��
EE// 1-composition or

composition along
a bounding 1-cell

• •
��
EE •

��
EE

�% y� �% y�

_*4 _*4 0-composition or
composition along
a bounding 0-cell

To make a strict ω-category we would now give strict associativity and
interchange axioms — or we could require some universal property like:

Given any pasting diagram there is precisely one way of composing
it.

For a weak ω-category, we want to say something like

Given any pasting diagram there is a whole bunch of ways of com-
posing it in different orders, but they should all be suitably related.

“Suitably related” means related by mediating cells , perhaps pseudo-invertible
ones, satisfying some coherence . For example here is a pasting diagram

• •//
��
EE

��

��
• •//

��
EE

��

��
.

In a strict ω-category, the interchange law tells us that all of the ways of
composing this diagram are equal. So it doesn’t matter in what order we perform
this composition. However, in a weak ω-category it does matter — we need to
distinguish between
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• •//
��
EE

��

��
• •//

��
EE

��

��
◦0 and

• •//
��// • •//

��//
����

• •// EE// • •// EE//

����

◦1

This is a bit like putting brackets into a “strict pasting diagram” to make it
into a “weak pasting diagram”. We can always then forget those brackets and
get back to the underlying strict pasting diagram.

So we have some sort of map:

“Weak pasting diagrams”
(Order is remembered)

“Strict pasting diagrams”
(Order doesn’tmatter)

��

Coherence is imposed by requiring that any two weak pasting diagrams with
the same underlying strict pasting diagram have a mediating cell between them
(one dimension up).

This is where contractions come in. The idea will be something like:

The space of weak pasting diagrams lying over any given strict past-
ing diagram should be contractible.

So the components of Penon’s definition are:

i) globular sets (with putative identities)

ii) binary composition

iii) contractions

2.2.1 Magmas

A magma is a structure given by the components (i) and (ii) above. That is,
we have:

i) a reflexive globular set = a globular set with putative identities picked out

ii) binary p-composition of k-cells (see diagrams on page 11)
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A map of magmas is a map of underlying globular sets preserving the putative
identities and the composition.

A magma can be thought of as a primitive sort of ω-structure, like an ω-
category with absolutely no coherence imposed at all. We will then use a
contraction to impose order on the magma and force the composition to be
something sensible.

2.2.2 Contractions

Where does a contraction live? What are we requiring to be con-
tractible?

The idea is to relate a magma to a strict ω-category and to use the coherence
of the strict composition to keep control over the composition in the magma.
So we use a diagram of the following form:

A

B

f

��

magma

preserves composition
and identities

strict ω-cat

oo

oo

oo

This is where our contraction is going to “live” (although actually all we need
in order to state the definition of contraction is that A be a globular set and B
a reflexive globular set).

The definition of contraction almost says:

Given any two cells with the same image under f , there must be a
given cell in between them that maps to the identity.

However, if we try to formalise this we see that it doesn’t make sense to ask for
a cell in between two cells unless they have the same source and target as one
another. We say two k-cells are parallel if k > 0 and they have the same source
and target as one another; we call all 0-cells parallel.

Then the definition of contraction actually says:

Given any two parallel k-cells α and β with the same image under
f , there must be a given(k+1)-cell α −→ β that maps to the identity
under f .

Stated formally we have

Definition A contraction1 [ , ] on a map f gives: for all α, β ∈ A(k) such
that

1The definition given in [69] is much more abstractly formal. There, Vφ(m) is “the set of
all pairs of m-cells that need a contraction” and a contraction is then defined as a map

Vφ(m) −→ A(m + 1)

for each m, which picks out a suitable contraction cell for each pair that needs one.
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i) α and β are parallel, and

ii) f(α) = f(β),

a “contraction cell” [α, β]: α −→ β such that

f([α, β]) = 1fα = 1fβ ∈ B.

Further, for all α we must have [α, α] = 1α ∈ A.

Pictorially:

given

• •//

• •

α

  

β

>>

_

��

the contraction gives a

• •

α

  

β

>>[α,β]

��

• •
  
>>id

��

_

��

Note on contractibility

Note that a contraction actually specifies the cells [α, β]; “contractibility” is
about existence of such cells, without actually specifying them.

Remark on pseudo-invertibility

There is some symmetry in the definition of contraction — if the pair (α, β)
needs a contraction, then so does the pair (β, α). So contraction cells come in
pairs

α

[α,β]

%%
β

[β,α]

ee

and the idea is for these to be pseudo-inverse to one another. If we compose
them (in A) we get something that lies over the identity in B since

f([α, β]) = id

f([β, α]) = id.

Now f preserves composition and identities, so

f([β, α] ◦ [α, β]) = id = f(1α)

which means we must have a contraction cell

[β,α]◦[α,β]
%%
1αff .

We can keep going, and the contraction will keep explicitly giving cells witness-
ing the fact that [α, β] and [β, α] really are pseudo-inverse to one another.
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Remark on flavours of contraction

An issue of terminology: Penon and Batanin both use this flavour of contraction
where Leinster uses a “richer” one. However, Batanin and Leinster both use
the term “contraction” whereas Penon uses the French “étirement” which means
“stretching”. It is not so strange that these words seem to be opposites — saying
that A contracts to B amounts to the same as saying B stretches to A, just seen
from the other direction. The emphasis in Penon’s case is perhaps the idea of
taking a strict structure and “stretching” it out to allow weakness; the emphasis
for Leinster and Batanin is the idea of ensuring a structure is not too weak by
making sure it can contract down to a strict one.

2.2.3 The all-important category Q

Given the above data for a contraction, we can immediately make a category
out of it: the no-longer-mysterious category Q is the category whose objects are




A

f��
B



 as above (page 13), equipped with a specified contraction. Morphisms

preserve everything possible.

2.3 The actual definition

We will now launch in and give the definition directly. The final step is techni-
cally simple (to state — harder to prove) but not necessarily intuitively clear.
We will therefore immediately unravel the definition to see what it actually looks
like.

2.3.1 Formalities

The idea is to define n-categories as algebras for a certain monad: we have a
forgetful functor

Q RefGSet
G //

A

B

f
��

A
� //

which sends





A

f��
B



 to the underlying reflexive globular set of A. The interest-

ing and crucial result is that G has a left adjoint F .

Definition A weak ω-category is an algebra for the monad P = GF .
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Note that F a G is not monadic so the left adjoint F is not actually a “free ω-
category” functor, and so Q is not equivalent to Weak-ω-Cat (see Section 2.4).
That is, the objects of Q are not themselves ω-categories but they do play an
instrumental role in defining them.

2.3.2 Explanations

So, what does an algebra for this monad “look like”? Given a reflexive glob-
ular set A, PA is supposed to be the “free weak ω-category on A” (or rather,
the underlying reflexive globular set of the free weak ω-category) obtained by
constructing a Q-object “freely” from A. This free Q-object FA will look like

PA

TA

f

��

where TA is the free strict ω-category on A.

Remark The fact that TA is the right thing to have at the bottom is perhaps
more evident in Penon’s original version, but here it should at least seem the
obvious thing to try. What other strict ω-category could we possibly use, if we
are only given A to start with?

We can then construct PA from A in quite a hands-on way, dimension by
dimension, freely adding in precisely what is necessary to ensure that

i) PA is a magma, and

ii) f has a contraction.

The first few steps proceed as follows:

0-cells These stay the same and f acts as the identity.

1-cells

i) New 1-cells required for contraction on 0-cells:
but f is the identity on 0-cells so we only need contraction cells [α, α], i.e.
1α, but these already exist in the reflexive globular structure of A.

ii) New 1-cells required for magma structure:
we already have identities, but we need to add binary composites freely,
and then binary composites of binary composites, and so on. We do it
by induction over the ‘depth’ of the composite. f sends these to the
underlying strict composite, i.e. removes the brackets.
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2-cells

i) New 2-cells required for contraction on 1-cells:
we need to add in a contraction cell mediating between any pair of weak
composites that have the same underlying strict composite. For example,

( )• • • •// // //

( )• • • •// // //

��

• • • •// // //id on

_

f

��

• • AFBECD]]//

• •//
��

• •//id on

_

f

��

ii) New 2-cells required for magma structure:
identities 1α are all given by contraction cells [α, α] so we just need to add
in binary composites, and binary composites of binary composites and so
on. For example,

• •//
��
EE

��

��
• •//

��
EE

��

��
◦

• •//
��// • •//

��//����

• •// EE// • •// EE//
����

◦

and
(

• •
��
EE�� • •

��
EE��

)

◦ • •
��
EE��

(

• •//
��
EE

��

��
• •//

��
EE

��

��
◦

)

◦

(

• •
��
EE�� • •

��
EE��

)

and we start to see how difficult these weak composites are to draw.
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3-cells Finally we give an example of a 3-cell from contraction.

• •//
��
EE

��

��
• •//

��
EE

��

��
◦0

• •//
��// • •//

��//����

• •// EE// • •// EE//
����

◦1

• •
��
EE//

��

��
• •//

��
EE

��

��

�
�

_

��

id on

giving the interchange constraint.

This gives an idea of what PA looks like.

Finally, a P -algebra gives us an action

(
PA

��
A

)

so it gives

i) composition, i.e. it evaluates the formal weak composites as actual cells of
A

ii) mediating cells i.e. it evaluates the formal contraction cells as actual cells
of A

Remark In the next chapter we will use a similar “dimension-by-dimension”
method to construct the monads for the Batanin/Leinster definitions.

2.3.3 Things to tinker with

In the next chapter we will discuss the definitions of Leinster and Batanin, and
we will informally “compare and contrast” these definitions as we go along.
We pause for a moment now to emphasise the places in this definition where
an alternative choice of approach could have been taken; the remainder of this
chapter will be an introduction to monads.

i) Reflexivity: we could do this whole definition starting with plain (non-
reflexive) globular sets rather than reflexive ones. That is, identities could
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be given along with composites as part of the algebra action PA −→ A,
rather than as a priori data. It might seem that this should give the same
notion of ω-category, but in fact this is not the case; see Section 2.3.4.

ii) Bias: Again, we could repeat the whole definition but using unbiased
composition for the magma structure (see Section 1.2.2). It would, how-
ever, make the freely generated composites technically harder to describe.
We expect that the end result should be in some sense equivalent, but
making this precise is difficult.

iii) Flavour of contraction: as discussed in Section 2.2.2.

iv) Use of operads to describe weak composition: we could also use
other algebraic structures like operads to describe the weak composition.
This approach will be taken in the next chapter for the definitions of
Batanin and Leinster.

2.3.4 Reflexivity vs non-reflexivity

We include some brief remarks here about the difference between the reflexive
and non-reflexive approaches. A full treatment would take more time than is
appropriate in this guidebook, but we include a few comments so that the clued-
up reader might be able to work out the details for himself; the less clued-up
reader will at least get an idea of where the issues are.

The problem can be seen in the following fact:

In the reflexive Penon set-up, braided monoidal categories are forced
to be symmetric.

Here we are constructing braided monoidal categories as degenerate 3-categories
with only one 0-cell and one 1-cell. The idea is that the braiding should come
from the “interchanger” of 2-cells, but in the reflexive set-up this interchange
mediator is forced to be the identity.

The general slogan then is that interchange is too strict. More precisely, the
problem arises for any cells (of any dimension) whose domain and codomain
are identity cells. Since a braided monoidal category is (here) a 3-category
with only one 1-cell, that 1-cell must be the identity. So all 2-cells have an
identity 1-cell as domain and codomain, and hence the problem arises for all
of them. Essentially, the problem comes down to the fact that cells with an
identity as domain and codomain can be “interchanged” past one another using
an Eckmann-Hilton type argument.

The problem does not arise in the non-reflexive case because in the under-
lying globular set we don’t know which cells are identities. At the moment of
constructing interchangers, this information about identities is still a “secret”;
in the reflexive case the secret is made public too soon, and this results in the
interchangers becoming too strict.
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2.4 A crash course on monads and their algebras

In this section we will briefly and informally review monads and their algebras.
We will not aim to be comprehensive or completely rigorous; rather, we aim to
give a sort of crash course so that the reader who is unfamiliar with these ideas
might at least get a feel for how a monad is used to get a handle on an algebraic
structures. For a full treatment we refer the reader to any standard text such
as [75].

We will explain how the algebras for a certain monad give small categories.
This construction can be generalised to give strict n-categories as algebras for
the “strict n-category monad”. Some of the definitions of weak n-category
discussed in this work arise as algebras for a certain monad; others (the “non-
algebraic”) do not. We will start with a simpler example but first we must get
the definition out of the way.

2.4.1 Monads

The slogan is:

A monad is an algebraic theory and an algebra for a monad is a
model of that theory.

The idea is that a monad gives us a way of describing a theory (such as “the
theory of groups”, “the theory of categories”, “the theory of compact Hausdorff
spaces”) by encapsulating all the information about how structures in that the-
ory are required to behave. This works provided the theory is well enough
behaved.

Monads are intimately related to adjunctions. Any adjunction gives rise to
a monad. We will use this to motivate the definition but the definition can just
as well be made directly.

Suppose we have an adjunction F a G: C −→ D with unit η: 1C −→ GF and
counit ε: FG −→ 1D. If we write T = GF : C −→ C we have the following two
natural transformations:

• η: 1C ⇒ GF = T with components

ηX : X −→ TX

• GεF : GFGF ⇒ GF which we write as µ: T 2 ⇒ T with components

µX : T 2X −→ TX

where η and ε are the unit and counit of the adjunction. From the axioms of
an adjunction the following diagrams commute:

TX
TηX //

1T X ##F
FF

FF
FF

FF T 2X

µX

��

TX
ηT Xoo

1T X{{xxx
xx

xx
xx

TX

T 3X
µXT //

TµX

��

T 2X

µX

��
T 2X µX

// TX
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If we now use the above facts as axioms we arrive at the definition of a
monad:

Definition A monad on a category C consists of a functor T : C −→ C equipped
with natural transformations

• η: 1C ⇒ T the “unit”, and

• µ: T 2 ⇒ T the “multiplication”,

satisfying the above axioms.

Example 1: groups

A standard example is the monad for groups. There is a forgetful functor
U :Grp −→ Set from the category of groups to the category of sets which
simply forgets about the multiplication, identities and inverses. The interesting
thing is that this functor has a left adjoint F :Set −→ Grp which sends every
set to the free group on that set. The composite UF is a monad on Set, the
“free group” monad, and we will later see that algebras for this monad are
precisely groups. This trick works for an important class of structures which we
think of as “well-behaved” by virtue of this highly desirable property.

Example 2: categories

As another example, consider the small category monad. A small category is
completely specified by a set of objects C0, a set of morphisms C1 and functions
s, t: C1 ⇒ C0, equipped with identities and composition satisfying some axioms.
If we forget the extra structure (i.e. identities and composition) we get a forgetful
functor U :Cat −→ Grph from the category of small categories to the category
of “graphs”. Here, a graph (or “directed graph” or “1-globular set”) is a diagram
of sets

C1

s //
t

//C0 .

We can think of a graph as a set of vertices with some arrows between them; a
typical graph looks something like

•

@GABCDYY

•

•

•

• •@GAFBE
99

__??????

??��������

//

OO oo__??????

77ooooooooooo

��

HH•

•
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where C0 is the set of vertices and C1 is the set of edges. The maps s, t: C1 −→
C0 assign a source and target to each edge, so we can add arrowheads accord-
ingly. A small category is a graph equipped with suitable composition and
identities.

Again, as with the case of groups, the forgetful functor U has a left adjoint

F which sends any graph C1

s //
t

//C0 to the category freely generated by it.

This category will have the same set of objects but a larger set of morphisms
because we have “thrown in” extra morphisms to give composites and identities.
Specifically, we must throw in one morphism for each composable string of k
arrows, for all k ≥ 0. Composition is given by concatenation of strings. Note
that a “composable string of 0 arrows” is interpreted as an “empty string” on
an object, giving the identity.

As before, this adjunction gives a monad

T = FU :Grph −→ Grph.

We will consider this monad in more detail as it is an important starting point
for the generalisation to n-categories.

The unit map ηC : C −→ TC embeds our original graph in our bigger one
by sending the original arrows to “strings of length 1” in our bigger graph. The
multiplication µC : T 2C −→ TC turns a “composable string of composable
strings of arrows”

• • • • • • • • •// // // // // // // //

︷ ︷ ︷ ︷ ︷ ︷

into a “composable string of arrows” in the obvious way, by forgetting the
subdivisions.

The axioms confirm two obvious facts:

i) The triangular (“unit”) axioms say that if we take a string of arrows, put
a subdivision around each arrow and then forget that we did it, we get
back to where we started; likewise if we forget we put brackets around the
whole thing and then forget them.

ii) The square (“associativity”) axiom says that if we have two layers of
subdivision to forget about, it doesn’t matter which one we forget first.

As with the previous example, we will see that the algebras for this monad
are precisely categories.

2.4.2 Algebras for a monad

Recall our slogan:

A monad is an algebraic theory and an algebra for a monad is a
model of that theory.
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We define an algebra for a monad as follows:

Definition Let (T, η, µ) be a monad for C. An algebra for T consists of

an object A ∈ C together with a morphism TA
θ //A such that the following

diagrams commute:

A
ηA //

1A !!B
BB

BB
BB

B TA

θ

��
A

T 2A
µA //

Tθ

��

TA

θ

��
TA

θ
// A

We refer to A as the “underlying object” of the algebra, and θ as the “algebra
action”. Many of our leading examples are monads on Set, so that an algebra
is a “set equipped with extra structure” or a “set with some operations on it”.
We’re quite used to thinking about the underlying set of a group, the underlying
set of a topological space, and so on. The “algebra action” then tells us where
the required extra structure is to be found, or how the operations are to be
evaluated.

Example: categories

We will discuss the example of the small category monad T :Grph −→ Grph
from the previous section. What does an algebra for this monad look like?

The underlying object is a graph C ∈ Grph, and the algebra action θ is
a map from the set of “composable strings of arrows” back to the original set
of arrows. This is a sort of “evaluation map” and tells us how each possible
composite is to be evaluated.

We now examine the algebra axioms. The first axiom tells us that θ acts
as the identity on the set of objects TC0 = C0 and that every string of length
one evaluates to the actual arrow it came from in C1. The second axiom tells
us about “composable strings of composable strings”. The lower-left side of the
diagram says “compose the sub-strings and then compose the results” and the
upper-right side says “forget the subdivisions and perform the whole composi-
tion all at once”. This is a generalised form of associativity as illustrated in the
following example:

( ) ( )• • • • • •
f1 // f2 // f3 // f4 // f5 // • • • • • •

f1 // f2 // f3 // f4 // f5 //

( ) ( )• • •
f2◦f1 // f5◦f4◦f3 //

• •
(f5◦f4◦f3)(f2◦f1) //

• •
f5◦f4◦f3◦f2◦f1 //

_

��

� //
_

��

� //
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Note that the small category we construct as an T -algebra does not have a
preferred binary composition. That is, a k-ary composite is given for each k ≥ 0.
A category with k-ary composites defined for all k rather than just a binary and
nullary composite can be thought of as an unbiased category. However, it is a
happy consequence of strict associativity that we can, equivalently, specify just
binary composites and identities, and check some simple special cases of the
general associativity axiom.

Remark on terminology

Note that monads were originally called by another name which we prefer to
forget. We agree with Mac Lane [75] that that terminology has achieved “a
maximum of needless confusion”.



Chapter 3

Batanin and Leinster

Introduction

The definitions of Batanin [9] and Leinster [72] look a bit similar to that of Penon
in that each gives n-categories as the algebra for a monad, and the underlying
data is a globular set of cells. Furthermore, in each case the idea is to use the
well-understood strict theory and weaken it using a notion of “contraction”.

The striking difference is the use of an operad to produce a monad in the
Batanin/Leinster approach. The definitions look like this:

Batanin: An ω-category is an algebra for an initial “operad with
contraction and system of compositions.”

Leinster: An ω-category is an algebra for an initial “operad with
(a slightly different kind of) contraction.”

This statement of the definitions is rather crude, but highlights the idea of
Leinster’s slightly different contraction, which is to handle Batanin’s notions of
contraction and system of composition all at once.

Points of difference

The use of operads can be thought of as a technical difference, but the definitions
also look quite different because of some “ideological” differences. There are
essentially four points of difference:

Penon Batanin Leinster

Reflexivity X - -

Biased composition X X -

Biased contraction X X -

Use of operad - X X
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We think of reflexivity and the use of an operad as “technical” differences
whereas biased composition and biased contraction can be thought of as “ideo-
logical” differences. We will now discuss each of these differences a little.

1. Reflexivity

This is about whether identities are given as part of the underlying data (“re-
flexive”) or as additional structure afterwards (“non-reflexive”). This turns out
to make an important difference to the resulting structure; see Section 2.3.4.

2. Biased composition

Penon and Batanin specify only binary and nullary composites (“biased”),
whereas Leinster specifies all arities (“unbiased”). The “general feeling” is
that the biased and the unbiased should be in some sense equivalent, but the
hard part is finding the right framework for expressing this equivalence.

3. Biased contraction

Considering contraction as a process of lifting cells, Penon and Batanin lift only
identity cells (“biased”) where Leinster lifts all cells (“unbiased”). This can
be thought of as a question of “bias” as in one case we are specifying only a
particular type of contraction cell, and (implicitly) using these to generate all
the others. For an example of this in more details, see Section 3.3.4.

4. Use of operad

There are (at least) two ways to think of the use of operads:

i) Often, one of the most technically hard parts of any definition is how
to express all the weak composites (i.e. weakly associative composites).
Operads give a “slick” way of expressing weak composites.

ii) In Penon’s definition we start with actual labelled cells and make com-
posites of them; alternatively we can use an operad to make composites
of unlabelled cells, and then put the labels on afterwards.

We will elaborate on this in the next section.
We note that while the use of an operad can be thought of as a technical

device for expressing weak composition, in the end the composition turns out
to be subtly different in some particular situations. We will discuss this further
in Section 3.5.1.

3.1 Intuitions

We begin by giving an intuitive feel for the ideas of this definition. Probably
the hardest idea to picture is the particular kind of operad being used here: by
“operad” in this chapter we really mean “globular operad”.
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The actual definition of a globular operad involves various pieces of back-
ground material that are not essential for an intuitive understanding; in any case
the rigorous definition is so elegantly abstract and compact that it takes a great
deal of unpacking to work out what it “looks” like. So we begin here by giving
an intuitive account of why operads might arise in a definition of n-category,
deferring a fuller definition to Section 3.2.

3.1.1 Why operads I

In this section we answer the question: Why operads? We can answer this
question from two points of view; we will take the opposite direction in the next
section. In both cases the starting point is going to be the following question:

How can we make weak composites of globular cells?

First, let’s think about how we can represent a weak composite of 1-cells e.g.
(

( )
(

( )
)

)

• • • • • • •// // // // // //

So what we really mean by “weak composite” is a composite in which we have
to remember the order of composition, since associativity is not strict. We can
‘remember’ in what order we did the composition by using the following diagram

��??

999 ���
��
�//

/

yy
yy

y
EE

EE
E

xxxxxx
FFFFFF

or

•
444 




•�
�22

22
2

•
444 




•�
��
��
�

))
))

))
))

•
??

??
��
��
��
��
��
��
��
�

Here, ��?? is supposed to be like an arrow pointing downwards but with two inputs
and one output. It is telling us that we have fed in two composable arrows and
composed them to make one single arrow.

In fact, these diagrams illustrate an operadic type of composition. We can
think of it as “sticking a configuration of cells into the place where one cell used
to be” or building up a “compound” composite stage by stage. The following
diagram illustrates this idea for the example above:

• • •// //

• • •// //

• • •// // • • •// //

• • •// //

Z	� Z	�

_��

Z	�
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Some more examples in higher dimensions

The weak composite

• •//
��
EE

��

��
• •//

��
EE

��

��
◦

can be expressed as

• •
��
EE��
• •

��
EE��

• •//
��
CC

��
��

• •//
��
CC

��
��

� $, -sz

which says: first do each vertical composite • •//
��
DD

��
��

, and then compose the

results together by • •
��
DD�� • •

��
DD�� .

Similarly, the weak composite

• •//
��// • •//

��//����

• •// EE// • •// EE//
����

◦

can be expressed as

• •//
��
EE

��

��

• •
��
DD�� • •

��
DD��

• •
��
DD�� • •

��
DD��

7w�

�]g
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A more general operadic composite of 2-cells might look like

• •
��
EE��
• • •// //��

EE
��

��

• •
��
DD�� • •

��
DD�� • •

��
DD�� • •//

��
DD

��
��

• •
��
DD�� •//

• •
��
BB
��
JJ LL��

��

��
��

• •//
��
DD

��
��

• •
��
DD��

• •// • •//
77

77
77

7

w�! ��
��
��
�

Q��

----
mSZ

L�	

Now that we’re in two dimensions the difference is that “the things we’re sticking
in aren’t linear.” This is where globular operads come in:

The things we are sticking in have globular pasting diagrams as their
underlying shape.

So we can now give the first answer to our question.

Question: Why operads?

Answer I: Because we can use operadic composition to express com-
pound composites of globular cells.

3.1.2 Why operads II

Why operads? We will now answer this question from the opposite direction.
The following table sums up the ideas we will now consider.

Penon Batanin/Leinster

technique non-operadic operadic

label the cells build weak composites

idea and then and then

build weak composites label the cells

The starting point is still going to be the issue of how to make weak compos-
ites of globular cells. We illustrate this by thinking about the following three
composable 1-cells:

a b
f // c

g // d
h //
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• In the Penon definition we take the cells and build the possible weak
composites directly

( )a b
f // c

g // d
h //

( )a b
f // c

g // d
h //

(ignoring possibilities with identities).

• Alternatively, we could “compose-then-label”, that is, find the weak com-
posites for unlabelled cells first, and put the labels on afterwards.

We then get the following pullback

( )• •// •// •//

( )• •// •// •// a b
f // c

g // d
h //

strict composite

• •// •// •//

underlying strict
unlabelled composite

·

zztttttttttt

$$JJJJJJJJJJJJ

�

forget
brackets ��?

??
??

??
??

??
? ?

forget
labels����

��
��

��
��

��
�

weak
“configurations”

(unlabelled)

GGww

Taking the pullback here “puts the labels on the weak configurations”. That
is, an element of the pullback is

• a strict formal composite, together with

• a weak configuration with the same underlying strict unlabelled composite.

A weak configuration can be thought of as an “order of composition” for a strict
pasting diagram. Strict composites are things we can handle: we have the free
strict ω-category monad T on the category GSet of globular sets, which takes a
globular set A and gives us all strict formal composites (including identities) of
cells in A. We can also do this to unlabelled cells by applying T to the terminal
globular set 1, which has precisely one cell of each dimension. Some examples
of the unlabelled case are illustrated below:
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1 T1

0-cells • •

1-cells • •// •
id on

• •// • •// •// • •// •// •// . . .

2-cells • •
��
DD��

id on all
1-cells

• •
��
DD�� • •

��
DD�� • •

��
DD�� • •

��
BB
��
JJ��

��

��

• •
��
BB
��
JJ��

��

��

• • •// //��
DD

��
��

3-cells • •
��
DD

�& x�
_*4 id on all

2-cells
• •

��
DD

�& x�
_*4 • •

��
DD •

��
DD

�& x� �& x�
_*4 _*4 �' w�

_*4

 ( v~
_*4

• •
��
GG// • • •// //��

EE
��
��

So to make labelled composites as above, we want a pullback of the following
form in GSet:

·

W TA

T1

����
��

��
��

�

��?
??

??
??

??

����
��

��
��

�

��?
??

??
??

??

�?

A priori, W could be any globular set of “weak configurations” that we choose.
W gives us immediate and direct control over what we want our theory to
“look like”. We could put biased or unbiased composites in W , or strange
combinations of things (or indeed strict composites), as long as we specify a
strict composite in T1 that each element of W lies over.

For example, for classical (biased) bicategories, W must at least have:

0-cells •

1-cells

• •// , • •// •// ,
( )
• •// •// •// ,

( )( )
• •// •// •// •// , . . . etc

2-cells

• •
��
DD�� , • •

��
DD�� • •

��
DD�� , • •//

��
DD

��
��

, • •//
��
DD

��
��

• •
��
DD�� ,

. . . and all 2-cell composites.
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We also need an associator 2-cell

( )• • • •// // //

( )• • • •// // //
��

lying over the identity 2-cell on • // • // • // • ∈ T1, and unlabelled
unit constraints.

Let’s see how the “unlabelled associator” gives us all the associators we need in
the pullback.

• An element of the pullback is a pair

(θ ∈W, α ∈ TA)

such that θ and α lie over the same element of T1.

Now suppose θ is the unlabelled associator given above. We get an element of
the pullback since:

i) θ ∈W lies over the identity 2-cell on • // • // • // • ∈ T1, and

ii) the identity on a
f // b

g // c h // d in TA also lies over the same element of
T1.

So we get an element of the pullback, giving the “labelled associator”

ahgf : h(gf)⇒ (hg)f.

What is a sensible choice of W?

So far we have only said that W is a globular set of weak configurations for our
theory. We now need to ask the following question:

What choice of W would make a sensible theory of ω-categories?

The first issue is that we would like this construction to produce a monad on
GSet, as this will at least give us some kind of well-behaved algebraic theory.
The monad would take a globular set of cells A and produce the “weak compos-
ites labelled by A”, given by the pullback. There is certainly one known way of
ensuring that this is really a monad:

The pullback construction produces a monad if W −→ T1 is an
operad.

So we can now give our second answer to our motivating question.

Question: Why operads?
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Answer II: Because this will ensure that the construction gives us
a monad.

Of course, just having a “sensible” algebraic theory is not enough: there are
plenty of sensible algebraic theories which are nothing like n-categories. So it
remains to be seen which operads give theories that deserve to be called “n-
category”, and this is where the remaining components of this definition come
in. This is analogous, at least in spirit, to the part of May’s definition which
involves deciding which operads are valid for parametrising weak composition;
see Chapter 8.

Remark on algebraic theories

The fact that “monads give algebraic theories” is a standard idea of category
theory. We might wonder if it is worth using all this abstract theory — if we
dropped these conditions on W , how “unsensible” might the theory become? We
will not go into this issue here.

3.1.3 What is an operad with contraction?

Globular operads

The actual definition of a globular operad is quite technical and involves various
pieces of background theory that aren’t really necessary for getting a feel for
what’s going on. Cartesian monads come into it, but we will postpone thinking
about this for as long as possible. For now we just give a vague description, so
that in the next section we can give an idea of what the definition of ω-category
is going to look like.

The idea of a globular operad is to index cells by globular pasting dia-
grams, and then compose them by “sticking diagrams into each other” as in
Section 3.1.1.

So the underlying data for a globular operad is a morphism of globular sets

A

T1
��

We think of A as a globular set of cells, each lying over a globular pasting
diagram as specified by the morphism in the diagram. This data is called a
collection, and a morphism of collections is a commuting triangle; we write
Coll for the category of collections and their morphisms, which is just the slice
category GSet/T1. The definition of operad looks like this:

A globular operad is a collection equipped with

• operadic composition

• operadic identity

satisfying some axioms.
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Contractions

We can ask for a contraction to exist on a collection. The idea will be, given a
collection of weak composites

W

T1
��

a contraction ensures that “the weak composites are sufficiently like the strict
ones”. We express this by demanding that we can lift any cell in the bottom
up to the top, provided we can lift its endpoints. (In fact Batanin only lifts
identities, where Leinster lifts all cells.)

Then a (globular) operad-with-contraction is an operad with a contraction
on its underlying collection.

3.1.4 The idea of the definition

We will be interested in the initial operad-with-contraction. We take the monad
associated with this and define ω-categories to be algebras for this monad.

Remark We also say “algebras for an operad”, and this is the same1 as “al-
gebras for the associated monad”, although there is a direct definition as well.

The idea is that this initial object gives us the globular set W of “weak
composites” that we were looking for in Section 3.1.2. It gives us just what
we need and nothing more, i.e. we generate “freely” precisely what we need for
an operad-with-contraction. (We discuss initial objects and free constructions
further in a moment.)

Evidently, for different flavors of definition (Penon, Batanin, Leinster) we
need different things, so when we generate freely we will get more things in
some definitions than in others. We discuss this further in Section 3.5.1.

Categorical aside on initial objects and free things

We have an adjunction

Operads-with-
contraction

Coll

F //

U
oo ⊥

and we know from categorical arguments that left adjoints preserve initial ob-
jects. The initial object in Coll is the empty globular set ∅ so the initial operad-
with-contraction is F∅, the “free operad-with-contraction on nothing”. This
gives us exactly what is needed for an operad with contraction, and nothing else.

1In fact Leinster [70] has exhibited two non-isomorphic operads which induce isomorphic
monads, but this will not affect us here.
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3.2 Globular Operads

It is quite quick to give a very abstract definition of globular operad, but much
harder to get a good intuitive feel for it. Drawing pictures is helpful but care
must be taken — it is very easy (not in LATEX) to draw ourselves pretty pictures
that accidentally fail to be sufficiently general, and there are various degenerate
situations it is important to remember.

3.2.1 Fast abstract definition

The most concise definition looks like this:

The category of collections can be given the structure of a monoidal
category. A globular operad is a monoid in this monoidal category.

Digesting this definition straight off might seem a bit like trying to jump on a
Concorde as it flies past, so for the sake of any reader who isn’t Superman, we
will build up to it bit more intuitively.

3.2.2 A bit more intuitively

An operad is given by an underlying collection together with composition and
identities. A collection gives a diagram

A

T1
��

=

...

...

...

...

Ak+1

(T1)k+1

��

Ak

(T1)k

��

Ak−1

(T1)k−1

��

// // // //

// // // //

// // // //

// // // //

(commuting serially), and the elements of A can be thought of as cells looking
like:

0-cells
•

b
•

a
•

c

1-cells

• •
{f} //a a′ • •// •// •//b b′

{g}

•
c

degenerate

Here we are using curly brackets to remind us that f and g are labelling
the whole string of 1-cells and not just one individual one. This becomes
crucial in the next dimension.

2-cells

• •
��
BB
��
JJ LL��

��

��
��

• •//
��
DD

��
��

• •//

{{α}}

a a′

{f ′}

{f}
• •

��
DD�� • •

��
DD�� • •

��
DD��

{{β}}

b b′

{g′}

{g}
{{γ}}

• •//
��
DD

��
��

• •//c c′

{h′}

{h}
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being careful not to forget degenerate 2-cells such as

• •// •//d d′

{k}

Now the double brackets indicate labels for the whole of each 2-cell; for
example {{α}} is a 2-cell with globular source and target

• •// •// •//a a′

{f}

and • •// •// •//a a′

{f ′}

where as above f and f ′ are labelling the whole string of 1-cells not just
one individual one. This is a bit hard to draw unambiguously.

Here is an example of what operadic composition might look like:

• •
��
EE��
• •// •

��
EE//

��

��

• •
��
BB
��
JJ LL��

��

��
��

• •//
��
DD

��
��

• •//
α

β

• •
��
DD�� • •

��
DD�� • •

��
DD��

γ

• •//
��
DD

��
��

• •//

f

• •// •//

OCK
� �'88

88
88

x�!
{{{{{{{{{

; 8C

• •
��
BB
��
JJ LL
��

��

��

��
��

��

• •//
��
BB JJ

��

��
��

• •//
����

•• //•• //•• //• •//
��
DD

��
��

� //

Working out what to do with the labels is much more complicated (at least to
notate).
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Aside on the “little discs operad”

This kind of composition might remind you of composition in the little discs
operad, if you’ve seen it:

1 4=

G}�

�ip

7−→

It might also remind you of the opetopic composition in Chapter 4, if you happen
to be reading this guide backwards.

3.2.3 Technically

An operad is going to be a monoid in the category Coll of collections. So it is

given by a collection
A

��
T1

together with

• composition:





A

��
T1



⊗





A

��
T1



 −→
A

��
T1

, and

• unit:

(
1

��
T1

)

−→
A

��
T1

satisfying monoid axioms.
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The tensor product





A

��
T1



⊗





A

��
T1



 is the collection given by the left hand

edge of the following diagram

·

TA A

T1T 21

T1

����
��

�

��?
??

??

����
��

�
T ! ��?

??
??

����
��

�

µ

����
��

�

�?

Note that an element of this pullback is a pair

i) an element of A together with

ii) a T -configuration of elements of A

such that the T -configuration matches the underlying shape of the element of
A given in (i) above. Or it is “a cell α together with a bunch of cells that
can be glued into α”. The boundary labels of the cells we’re glueing in have
to match up, but they don’t have to match the labels of the underlying cell α;
these boundaries will have to be composed (at lower dimensions) as well.

Some reassurance: Don’t worry if you didn’t follow that bit; it probably isn’t
necessary in order to get a feel for the definition. The main thing is to bear
those pictures of composition in mind.

Note on technicalities

To check that this monoidal structure on Coll really works, we need to know
that T is a “cartesian monad”. The reader may have seen “cartesian monads”
mentioned in other expositions of operads. This is just to ensure that the
monoidal structure on Coll really works, which is why we haven’t worried about
it here.
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3.2.4 Algebras for an operad

Recall our second answer to the question “Why operads?” (Section 3.1.2) was:
to ensure that the pullback

“WA”

W TA

T1

����
��

��
��

��?
??

??
??

?

����
��

��
��

�

��?
??

??
??

??

�?

produced a monad by the assignation

A 7→WA.

We can now say:

An algebra for an operad is an algebra for its associated monad as
above.

3.2.5 Which operad do we want?

Having answered the question “Why operads?” and the question “What is an
operad?” we now have to ask:

Question: What makes a particular operad a sensible choice for
defining n-categories?

Recall that we want to use operads to express weak composition of globular
cells. We must be careful not to confuse the composition of cells in an n-
category with the composition in an operad. The former will be obtained by
putting some extra structure on our operad.

• Composition in an n-category will be given by requiring certain kinds of
cells to be present in our operad.

• Composition in the operad will then generate all “compound” composites
i.e. composites of composites applied repeatedly.

The question of what cells to require in our operad brings us to the subject of
contractions, and so to the fork in the path where Leinster and Batanin diverge.

A general answer to the above question is:

Answer: It should at least

i) have enough cells to give composition for an n-category, and
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ii) be sufficiently “like” T1 to be coherent.

Furthermore, we would prefer it to have a universal property, so that
it is in some sense canonical.

The definitions of Leinster and Batanin arise from two different ways of
satisfying these criteria. Batanin’s does it with fewer cells; Leinster’s does it
with fewer definitions.

3.3 Leinster

We are going to look for an operad

L

T1

d

��

and the idea is:

i) Throw in all the composites we want to specify in our theory.

ii) Throw in all the weak “compound” composites of these.

iii) Throw in coherence cells to mediate between the weak composites.

We begin by asking:

Question: What sorts of composites do we want to specify in our
theory of n-categories? Which ones are the basic ones we will use to
generate all the others?

Leinster’s answer: All of them, i.e. completely unbiased.

That is, we must be able to lift every composite in T1 up to L. These strict
composites will give our basic “generator” composites, and we will use operadic
composition to generate compound composites of these.

We will perform this “lift” by means of a contraction on the map d. More-
over, this contraction will also ensure that L is sufficiently “like” T1, thereby
fulfilling the two above requirements in one go.

3.3.1 Leinster’s contractions

For an introductory discussion about contractions see Section 2.2.2. This is a
more general kind of contraction than that of Penon and Batanin as we are
now going to lift all cells where Penon and Batanin are (effectively) just lifting
identities.

The definition of Leinster’s contraction then says:
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Given any two parallel k-cells α, β ∈ L and a k-cell

θ : dα −→ dβ ∈ T1,

we get a contraction (k + 1)-cell

[α, β, θ] : α −→ β ∈ L

that is mapped to θ by d.

In particular, this gives us

i) a copy of every cell in T1, giving us all the basic unbiased composites that
we want

ii) a mediating cell as before between any two weak composites in L lying
over the same strict composite in T1, obtained by lifting the identity

iii) more “mediating cells” obtained by lifting non-identities — we can think
of these as a cross between mediators and composites2.

For examples of all of this, see Section 3.3.4, in which we look at an explicit
construction of Leinster’s operad in the first few dimensions.

3.3.2 The category of operads-with-contraction

We can now form the category OWC of “operads-with-contraction”, with mor-
phisms that preserve everything in sight. Here we are considering operads that
have a specified contraction (unlike in Simpson’s definition where the “compo-
sition maps” are just required to be contractible; see Chapter 5). This means
that we can ask for an initial object in OWC. This is the universal property
used to pick out the right sort of operad for use in Leinster’s theory.

3.3.3 Leinster’s definition

To sum up, we now gather up all the ingredients to make the following definition:

An ω-category is an algebra for an initial operad-with-contraction.

3.3.4 What does Leinster’s operad look like?

To construct this operad we can proceed dimension by dimension (cf. the con-
struction of Penon’s monad, Section 2.3.2). At each stage we must have

i) a contraction, and

2Leinster’s philosophy is that mediators and composites are really all part of the same
notion, and so it makes sense for them to be produced with the same tool, namely contractions.
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ii) operadic structure

so we “freely” throw in just enough cells to make this happen (see discussion
on initial objects and free things, Section 3.1.4.) We illustrate the first few
dimensions below.

0-cells

i) contraction: nothing happens here since there are no lower dimen-
sions to consider needing contraction cells

ii) operadic structure: • from unit of operad

1-cells

i) contraction: we must lift composites of all lengths from (T1)1. That
is, we get all 1-cells in T1 that start and end with • which is of
course all of them. For example, • , • // • , • // • // • and
• // • // • // • and so on.

ii) operadic structure: we get all sorts of operadic compositions like

• • •// //

• • •// //

• • •// //

_��

j��

2-cells

i) contraction: we will exhibit each of the three cases mentioned in
Section 3.3.1. First, we certainly get any 2-cell of T1 by lifting each
one with its own source and target

• • • • •// // // //

• • • • •// // // //
��

• •
��
BB
��
JJ LL��

��

��
��

• •//
��
DD

��
��

• •
��
DD�� • •//

_

�� .

This works because we already have every 1-cell of T1. This will
continue inductively at every dimension, so we will get every k-cell
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of T1 in our operad. Secondly, we get mediating cells as before by
lifting identities, for example:

• • •// //

• • •// //

_��

• • •// //

• • •// //

Z	�

��

• • • •// // //

_

��
id on

But thirdly, we also get to lift any 2-cell of T1 between anything of
the correct length for the source and anything of the correct length
for the target. i.e. we get any strict 2-cell pasting diagram together
with some weak way of composing the source and some (possibly
different) way of composing the target.

For example, the above 2-pasting diagram gets lifted in between any-
thing of length 4 for the source and anything of length 4 for the target,
such as in the diagram below.

• • •// //

• • •// // • • •// //

• •//

O��

Z	�_��

• • • •// // //

• • •// //

_��

��

• •
��
BB
��
JJ LL��

��

��
��

• •//
��
DD

��
��

• •
��
DD�� • •//

_

��
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ii) again, a whole ton of operadic composites.

This rather painstaking construction helps us see the subtle differences between
Leinster, Batanin and Penon; see Sections 3.4.4 and 2.3.2.

3.4 Batanin

We now discuss Batanin’s original form of the definition. We will look for an
operad

K

T1

d

��

and as before the idea is to throw in all the composites we want to specify in our
theory, make weak “compound” composites of them using operadic composition,
and throw in coherence cells to mediate between the weak composites.

Question: What makes an operad a sensible choice for defining
n-categories?

Answer: It should at least:

i) have enough cells to give composition for an n-category,

ii) be sufficiently “like” T1 to be coherent

and have some kind of universal property.

Now where Leinster uses unbiased contractions to meet both these requirements
in one go, Batanin uses two notions: a (biased) contraction for the second, and
a (biased) system of compositions for the first.

Question: What sorts of composites do we want to specify in our
theory of n-categories?

Leinster’s answer: All of them.
Batanin’s answer: Just the binary ones.

So we don’t want to throw in all cells of T1, but only the binary ones. This is
the role of the system of compositions. We then use a contraction (lifting only
identities) and finally we can look for an initial object as before.

3.4.1 System of compositions

Composition for the eventual n-category is going to be given by some extra
structure on the operad:

i) We demand a “system of compositions”, giving all types of binary com-
posite at all dimensions.
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ii) Operad composition will then generate all the “compound” binary com-
posites i.e. for binary composition applied repeatedly.

We follow the notation of [69]. We will be interested in a particular collection
S

��
T1

which we can think of as a sub-globular set of T1 containing just the binary

composites. So S contains for each m

i) a basic boring k-cell called βm
m ∈ S(m), and

ii) all possible binary composites of that m-cell along p-cell boundaries. So
for each 0 < p < m we have a composite βm

m ◦p βm
m and we write this as

βm
p ∈ S.

Example

m = 3

β3
3 • •

��
DD

�& x�
_*4

β3
2

���% y�

_*4 _*4• •
��
DD

β3
1

�' w�
_*4

 ( v~
_*4

• •
��
DD//

β3
0 • •

��
DD •

��
DD

�& x� �& x�
_*4 _*4

So each set S(m) has m + 1 elements. Also, we get a map 1 −→ S picking
out the “boring cell” βm

m at each dimension. (We need this boring cell to ensure
that S really is a globular set; otherwise some cells in S wouldn’t have a source
and target in S.)

Remark We could fiddle around with the notion of composition for our theory
of n-categories by using a different S, e.g. we could go completely unbiased by
putting S = T1, or we could go wild and demand that S have 42 cells of each
dimension and a hundred ternary composites. The resulting theory would be
very bizarre, but this example illustrates the point.
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S = T1S //______ //______
biased unbiased

anything
in between

crazily more . . .

_LR _LR

Definition A system of compositions for an operad
K

��
T1

is a morphism S −→ K

such that
S K

T1

� l

��4
44

44
44

4
//

��












and

1 S

K

unit of
operad ��?

??
??

??
??

//

��

commute.
In summary, the idea is that when we construct our operad freely, these are

the formal composites we want to start with and use to generate all the weak
ones.

3.4.2 Batanin’s contractions

Batanin uses contractions to ensure that “K is sufficiently like T1”. He uses
the following flavour of contraction (lifting only identities):

Given any two parallel k-cells α and β with the same image under d,
there must be a (k + 1)-cell α −→ β that maps to the identity under
d.

We refer the reader to Section 2.2.2 for introductory discussion on contractions.

3.4.3 Batanin’s definition

We construct a category OCS with

• objects: operads equipped with a system of compositions and specified
contraction

• morphisms: preserve everything

and we seek an initial object to make the following definition:

An ω-category is an algebra for an initial object in OCS.

(See Section 3.2.4 for the definition of an algebra.)
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Technical remark: This is Leinster’s interpretation of Batanin in [69] but in
fact it isn’t what Batanin actually does in [9]. Batanin introduces a category of
“contractible operads with a system of compositions”, and because these operads
are not equipped with a specified contraction, there can’t be a genuinely initial
object. Instead, Batanin constructs a specific operad and uses it for the definition
of n-category. It is a “weakly initial object” in the sense that there exists a (not
necessarily unique) map from it to any other object in the category. This is the
best we can do if the operads aren’t equipped with specified contractions; however,
it seems that Batanin’s operad is intended to look like an initial object in the
category OCS as above.

3.4.4 What does Batanin’s operad look like?

To construct this operad we can proceed dimension by dimension (cf. Penon in
Section 2.3.2, and Leinster in Section 3.3.4). This time, at each stage we must
have

i) a contraction,

ii) a system of compositions, and

iii) operad structure.

We “freely” throw in just enough cells to make this happen. (Again, see discus-
sion on initial objects and free things, Section 3.1.4.) We illustrate the first few
dimensions below.

0-cells

i) contraction: nothing happens since there are no lower dimensions to
consider needing contraction cells

ii) system of compositions: we must have S(0) −→ K(0) and S(0) has
one boring 0-cell so we get one boring 0-cell in K(0) that we denote
as •

iii) operadic structure: nothing new since the only cell we have so far is
a unit, so nothing happens when we compose it

1-cells

i) contraction: we get to lift the identity on • in T1. So we get

•id on

_

��

• •
I1 // ∈K(1)

∈T1(1)
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ii) system of compositions: we get • // • // • and • // • which has
to be the boring operadic unit

iii) operadic structure: we get to compose these things operadically e.g.

• • •// //

• • •// // • •//

• •//

Z	� Z	�

_��

2-cells

i) contraction: we get identities on everything and 2-cells between any
two things with the same underlying length, for example

• • •// //

• • •// // • • •// //

Z	�_��

• • •// //

• • •// //

• • •// //

_��

j��

��

All of the cells obtained in this way lie over the appropriate identity
cell in T1

ii) system of compositions: from our system of compositions we get the

boring 2-cell • @@
��
•�� and • @@

��
•�� DD

��
�� and • EE

��//// •��
��

iii) operadic structure: tons of cells from operadic composition like

• •
��
EE��
• •

��
EE��

• •//
��
CC

��
��

• •//
��
CC

��
��

� $, -sz

3.5 Some informal comparison

In order to remain calm at this point, it is worth thinking about where each
part of the n-category structure comes from in the definitions of Penon, Batanin
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and Leinster. We sum this up in the following table:

Penon Batanin Leinster

identities reflexivity contraction contraction

basic composites magma structure system of composition contraction

compound composites free magma structure free operad structure free operad structure

constraint contractions contraction contraction

coherence contraction contraction contraction

3.5.1 Operadic vs non-operadic

How is the non-operadic globular approach different from the operadic? When
we say “different” we need to be clear what we mean, just as when we say
“equivalent.” We expect that Penon’s approach is equivalent to the operadic —
in some sense. But there is a precise sense in which the approaches are different.
One way of thinking of this follows from our discussion in Section 3.1.2. We
discussed the notion of using a globular set W to characterise “weak composites”
in our theory in any way we want, forming labelled weak composites by the
pullback on page 31:

·

W TA

T1

����
��

��
��

�

��?
??

??
??

??

����
��

��
��

�

��?
??

??
??

??

�?

As we remarked in Section 3.1.4 we now have a possible W for each of the
globular definitions. If we write WP , WB , and WL respectively, we get the
following inter-relationship:

WLWBWP
�
� // �

� //

binary composites
and biased contractions

need extra
operadic composites

need extra
unbiased composites

and unbiased contractions

_LR _LR _LR
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So the monad action on a globular set A gives us three similarly related pullbacks

·

·

·

TAWLWBWP

T1

����
��

��?
??

??

��?
??

?

����
��

�

**TTTTTTTTTTTTTT

++XXXXXXXXXXXXXXXXXXXXXXXXX

||zzz
zzzz

zzz
zzzz

zzz
z

||yy
yyy

yyy
yyyy

yyy
yyy

yyy
yyy

yyy
yyy

yy

��+
++

++
++

++
++

++

��(
((

((
((

((
((

((
((

((
((

((
(

��

��

�
� // �

� //

�?

�?

�?

with maps induced as shown by the universal property of the pullbacks.

The comparison of the non-operadic with the operadic occurs via the (non-
surjective) inclusion

WP ↪→WB

where WB has “extra operadic composites”. We will now give an example of
the sort of composite that Batanin demands where Penon does not, drawing
attention to as few technical details as we feel is possible. However, in order
to see what is going on with this rather subtle difference, it is important to be
quite clear about what our diagrams mean.

We will take this slowly, in three steps. In steps (i) and (ii) we warm up
with some cells demanded in both theories; in step (iii) we find a cell demanded
only by Batanin, building on step (i).

i) Both theories demand an “associator” by contraction. Let us write θ1 for
the cell

• • •// //

• • •// //

_��

and θ2 for the cell

• • •// //

••• oooo

_��

.
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Both of these lie over • // • // • // • in T11 so can be represented as

• // •
{θ1}// • // • and • // •

{θ2}// • // • respectively. So by the contraction
we get an “associator”

• • • •// {θ1} // //

• • • •//
{θ2}

// //
a��

• • • •// // //
id 2-cell on

_

��

We can represent this as • // •
{{a}}// • // • with the double curly brackets3

to remind us that a is lying over an identity 2-cell in T12.

ii) Now write φ1 for

• • •// //

• • •// //

• • •// //

_��

j��

and φ2 for

• • •// //

• • •// // • • •// //

Z	�_��

similarly in both theories we get a “more general associator” a′

• • • • •// {φ2} // // //• • • • •// {φ1}// // // a′

+3

• • • • •// // // //
id 2-cell on

_

��

3We don’t pretend that this notation is very wonderful. These things are hard to draw.
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iii) In Batanin’s theory we also get an operadic composite

• • • •// ////
{{a}}

• • •// //

_��

• • • • •// // // //
id 2-cell on

_

��

“composing on top of a constraint”. (It looks like the thing we’re compos-
ing on top of a is a 1-cell, but technically it’s a degenerate/identity 2-cell.)
The resulting cell has the same globular source and target as a′ but is not
the same as a′. This example is not something we find in Penon’s theory.
So this is an example of an “extra operadic composite”.
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Opetopic

4.1 Introduction

The opetopic approach was first proposed by Baez and Dolan in [4]. The most
striking feature of this definition is the underlying shapes of its cells. These
shapes are called “opetopic” and look like

�����

oooooo OOO
OOO

$$
$$
$

7777

oooo

oo WWWW

OOO
O

��
��

jjjj
��
� V

7777

oooo

WWWW

��
��

jjjj
��
�

This is not just a whimsical artistic foible or even an arbitrary ideological deci-
sion — opetopic cells are this shape in order to express composition. That is, in
this definition cells do not just play the role of “being cells”; they also directly
give composition.

Historically, the definition followed Street’s and can be thought of as a way
of avoiding the complicated combinatorics of orienting simplices and calculating
“admissible horns”. Opetopic cells have orientation built into them. Note that
the shapes are both more and less general than simplicial shapes — more, be-
cause they can have any number of “input faces”, and less because they always
have precisely one “output face”.

The definition itself is a bit like a nerve condition where the underlying data
is now an opetopic set, not a simplicial set.

Definition An n-category is an opetopic set in which

i) every niche has an n-universal filler, and

ii) every composite of n-universals is n-universal.

The first condition is like a horn filling condition, and the second is analogous
to Street’s condition: “if all but one face of a hollow cell is hollow [. . . ] then



54 Chapter 4. Opetopic

the last face must also be hollow.” Here universality is analogous to hollowness,
with a crucial difference that universality is an inherent property of certain cells
in an opetopic set where hollowness is extra structure on a cell.

Note on non-algebraic approach

One key characteristic of this definition is that it consciously avoids being alge-
braic. Part of the ideology behind it is to get rid of equalities and uniqueness. So
we will have a lot of “existence” demands but nothing given as actual structure
on the underlying data.

Note on technicalities

The technicalities involved in setting up this definition rigorously are quite se-
vere. However, it is possible (and probably easier) to get a feel for this definition
without mentioning the technical details at all. That is the approach we take
here; the technicalities have been written up extensively elsewhere. See Sec-
tion 4.5 for remarks on the literature.

4.2 Opetopic cells

The aim of this section is to give a feel for what opetopic cells look like without
even a hint of how they are technically constructed.

Opetopic shapes come from “what composition looks like”. For example, we
can compose a string of 1-cells and get one 1-cell whose source and target are
identified as shown:

• • • • •

• •

// // // //

//
77

77
77

77
77

77

77
77

77
77

77
77

��
��

��
��

��
��

��
��

��
��

��
��

If we actually identify those endpoints in the diagram we just get:

•

•

•

•

•• •

JJ�����

44jjjjjjj **TTTTTTT

��)
))
))

//
��

We call this a 2-cell as its source(s) and target are 1-cells.

Next we need to think about what 2-cell composition (along boundary 1-
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cells) would look like. Using the 2-cell shapes as above we get things like

•

• •

•• •

HH��������

//

��.
..

..
..

.

//

•

•

• • •

•

aaDDD

FF

//

GG�����

//

��/
//

//
//

��		
		

	

AA��� ��:
::

��

��

#+OOOOOO

��

v~ tttt

_*4

•

• •

•• •
��.

..
..

..
.

//

•

•

• • •

•

aaDDD

FF

//

GG�����

//

��		
		

	

AA��� ��:
::

��

and we call this a 3-cell as its source(s) and target are 2-cells.

So the general principle for a k-cell is:

• the source is a picture of how to compose some (k − 1)-cells

• the target is the shape of the result.

An example of a 4-cell is:

������

oooooo OOOOOO

$$
$$
$$77777

oooo

oo WWWW

OOOO

��
��
�

V
77777

oooo

oo WWWW

OOOO

��
��

�

���� KKKKKK
++

++
V

���� ++
++

���� 66
66

V
���� 66

66

oooo OOO
O

ooooooo
V

oooo OOO
O

��� ++
+ssssss V

��� ++
+

t��

_��

?:D

D|�

!= ������

nnnnnnnnnnnnn

����������

oooooo OOOOOO

$$
$$
$$77777

oooo

oo WWWW

OOOO

��
��
�

V
77777

oooo

oo WWWW

OOOO

��
��

�

We often give up drawing lower-dimensional arrowheads when the directions are
clear from the diagram.

Note on technical construction

Constructing these things as a piece of algebra is bit subtle and uses the language
of multicategories. Multicategories are a bit like operads and the reader may
well find the above 4-cell reminiscent of the operadic composites in Chapter 3.
We will proceed, however, without the technical construction and hence will not
need multicategories either.
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4.3 The Definition

An n-category is an opetopic set in which

i) every niche has an n-universal cell in it, and

ii) every composite of n-universals is n-universal.

So we need to understand the terms in italics. This is the aim of the rest of this
section.

Note

In [4] the dependence on n is not made explicit in conditions (i) and (ii). That
is, the term “universal” is used rather than “n-universal”, but the definition of
“universal” uses a fixed n. We have found it clearer to emphasise this depen-
dence on n, as this is the only way the n-dimensionality of the n-category comes
in.

4.3.1 Opetopic sets

An opetopic set is a presheaf on the category O of opetopes. As usual, this can
be thought of as a category of “underlying shapes”. An opetopic set then gives
a set of cells of each shape. This can also be thought of as giving “labels” to
the blank opetopes.

Constructing the category of opetopes involves more technical details than
we wish to include, and it is more illuminating to draw some pictures. The main
point to note is that O has face maps but not degeneracies. The face maps tell
us about the constituent lower-dimensional parts of a cell.

An opetopic set X consists of: for each k ≥ 0 a set X(k) of k-cells which are
“labelled opetopes” e.g.

0-cells •
b

•
a

•
c

1-cells • •
f //a b

2-cells

• •

•

f3

//

f2

��4
44

44
44

4

f1

DD








α
��

• •

• •

f4

//

f3

��+
++

++
f1

II�����

f2 //

β
��

• •
f2

//

f1

��α��
• •

•

f3

//
α
��

. . . and for all lengths of source.
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3-cells

• •

• •

// ��
++

++
+II�����

// ::uuuuuuuuu

α
β

θ _*4

• •

• •

// ��
++

++
+II�����

//

γ ,

• •

• •

•

//

CC���� ��7
77

7

��+
++

++

��

II�����

//

β

α

γ
θ _*4

• •

• •

•

//

CC���� ��7
77

7

��

II�����
δ and so on.

Note that we often omit the lower dimensional labels when they are implied by
the higher dimensions, but in all cases the constituent cells of all dimensions
are elements of the opetopic set and so should have labels. We can think of the
constituent (k − 1)-cells of a k-cell as “faces”.

4.3.2 Niches

A k-niche is a “potential source” for a k-cell. It is a bit like a horn: it is a k-cell
with no interior and one face missing. But here the missing face must be the
target face. For example,

• •
? //a ? gives a “potential source” for a 1-cell

?

f3

++
++

++
+

f1

�������

f2

?
��

gives a “potential source” for a 2-cell

������ 77
77

77

++
++

++
+�������

β

α

γ ? _*4

������ 77
77

77

�������
? gives a “potential source” for a 3-cell.

So a k-niche is a pasting diagram of (k − 1)-cells, and can be thought of as
“something that needs a composite”.

4.3.3 Composites

Composition in an opetopic n-category is to be given by universal cells; we will
define universal cells in the next section.
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Definition Given a universal cell α we say its target cell is a composite of
its source cells.

For example, in the diagram below

������ 77
77

77

++
++

++
+�������

β

α

γ

θ _*4

������ 77
77

77

�������

δ

if θ is universal then we say δ is a composite of α, β, γ.
Recall in the definition of an n-category we demand that “every niche has a

universal filler”. So this can be interpreted as:

Everything that is composable does have a composite.

Note Composites are not unique in this theory. We might have another uni-
versal cell θ′ ������ 77

77
77

++
++

++
+�������

β

α

γ

θ′

_*4

������ 77
77

77

�������

δ′

giving δ′ as another composite of α, β, γ.

4.3.4 Universals

Universal cells are going to be a bit like pseudo-invertibles. Here are two ways
of thinking about a universal cell β as below:

g

f3

++
++

++
+

f1

�������

f2

β
��

i) This cell translates into ordinary globular language as “a cell from the
composite of f3, f2, f1 to g” i.e.

f3 ◦ f2 ◦ f1
β //g.

If β is universal we are saying that this is an (internal) equivalence. But
the spirit of the opetopic definition then says that g should be considered
as a perfectly good composite of f3, f2, f1 as well.

ii) If β is universal it is like a “proof of the fact that g is a composite of
f3, f2, f1”. The universal cell β witnesses the fact that g is a compos-
ite. There might be many composites and for each one there might be
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many proofs/witnesses. For a nice coherent structure, the different proofs
should be “provably related”, i.e. by 3-cells witnesses. There also might
be different 3-cells giving these “proofs”, but these should all be related
by 4-cells, and so on.

The definition of universality

The full definition is by downward induction over dimension. Above n we have a
uniqueness condition; below n we have a factorisation condition, where “factori-
sation” is given by universal cells at the dimension above. Note that this is why
the definition can’t do ω — the downward induction wouldn’t have anywhere
to start. (Makkai appears to have a definition of universality that can “do ω”
[78].)

To get a feel for the idea of universality, we can think about how we define
isomorphisms in an ordinary category.

• Usually we say:

a
f
−→ b is an isomorphism if ∃ b

g
−→ a

such that fg = 1, gf = 1

but we can’t do this for opetopic shapes because the inverse might have to go
from one cell to many cells, which is not allowed. (Remember, targets consist
of only a single cell.)

• Another approach is by factorisation :

a
f
−→ b is an isomorphism if ∀ a

h
−→ c ∃! b

g
−→ c

such that
a c

b

h
//

g

��4
44

44
f

DD




 commutes.

The last method is the one we copy.

Remark on original Baez/Dolan definition

The definition of universality in [4] is more general as it is set up to be used for
a range of definitions other than n-categories. We have boiled it down to leave
only the cases needed for n-categories.

Definition (Sketch) Let α be a k-cell.

• If k > n then α is n-universal iff it is unique in its niche.

• If k ≤ n then α is n-universal iff

i) given any k-cell β with the same source, there exists a factorisation
through α, and
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ii) any factorisation through α is a universal factorisation.

Rather than go through the technicalities of this (and the definition of “uni-
versal factorisation”), we now draw some pictures to illuminate the case k = 2.

f1

f2
�����

f3

f4

::
::

:

f5

g

α
��

We examine what it means for α to be universal.

i) Given any f1

f2 ���

f3
f4::

:

f5

g′

β�� then by (i) we must have a factorisation

����� ::
::

:

β̄

α

u_*4
universal

����� ::
::

:

β

ii) Any factorisation through α, i.e.

����� ::
::

:

θ̄

α

u′

_*4
universal

����� ::
::

:

θ

must be a universal factorisation. This means, given any

����� ::
::

:

γ

α

v _*4

not necessarily
universal

����� ::
::

:

θ

there must exist a factorisation

���� ::
::

θ̄

α
u′

_*4

���� ::
::

θ

γ _*4
θ̄

���� ::
::

γ

α
v _*4

���� ::
::

θYIO
������

!=
u′′

universal

and moreover, any factorisation of this form through u′ must itself be a
universal factorisation.

NB Factorisations of n-cells are defined to be universal if and only if they are
unique, so this definition doesn’t go on forever.
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This definition is to ensure that we only call something a composite if it
“really deserves it” and will give a sufficiently coherent structure at the end.
For example we might imagine being given the cells of a bicategory but no
other information about it. If we tried to put composition on it we could:

i) go very wrong by assigning “composites” that didn’t deserve it, i.e. that
didn’t satisfy the coherence axioms, or

ii) find a perfectly good coherent composition that wasn’t exactly the same
as the one originally intended.

The use of universality in the opetopic definition prevents case (i) and embraces
case (ii) — given many possibilities for coherent composition, we accept them
all.

4.4 Comparison with classical bicategories

In order to shed more light on how this definition works we now sketch how
opetopic 2-categories correspond to classical bicategories. It is worth first com-
paring the DSP trichotomy in each case:

Opetopic Classical

data opetopic cells globular cells

structure - identities, composition, constraints

properties enough universals exist coherence axioms

To get a classical bicategory from an opetopic one we can clearly start by
taking the “globular shaped” cells from the opetopic set. However, we then
have to find identities, composition and constraints, and check coherence. This
is where the universals are needed. Here are some ways of thinking of it:

i) “An opetopic set is an n-category if enough universals exist to give us
identities, composition and constraints coherently.”

ii) “An opetopic set is an n-category if the globular cells alone can tell us all
the cells, and the other shaped cells are only telling us about behaviour.”
Or, put another way

iii) “An opetopic set is an n-category if enough universals exist so that every
cell can be distilled down to a globular cell.”

The process of “distillation” is how we interpret an opetopic k-cell as an ordinary
(globular) k-cell with just one (k − 1)-cell at its source and target.
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4.4.1 From opetopic to classical

Let X be an opetopic 2-category. We show how to construct a bicategory B
from it. The beginning is easy enough:

• the 0-cells of B are the 0-cells of X

• the 1-cells of B are the 1-cells of X

• the 2-cells of B are the 2-cells of X with shape ��

but from this point onwards an issue of choice arises. We will have to choose
some universal cells in X . The whole process can be summed up in the following
table.

Classical B Opetopic X

0-cells 0-cells

1-cells 1-cells

2-cells globular shaped 2-cells

1-cell identities choice of nullary universal 2-cells

1-cell composition choice of binary universal 2-cells

2-cell identities unique universal 3-cells

vertical 2-cell composition unique universal 3-cells

horizontal 2-cell composition unique factorisation of 2-cells

associators unique factorisation of 2-cells

unit constraints unique factorisation of 2-cells

axioms follow from uniqueness of 2-cell factorisation

We spend the rest of this section going through this process in more detail;
full details are written up in [27].

i) 1-cell identities

For each 0-cell x ∈ X we have a universal 2-cell of shape

•

��
x x
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i.e. a “nullary” 2-cell, with zero 1-cells as the source. We pick one universal
nullary 2-cell for each 0-cell, and call the target Ix

•

Ix

ux

��
x x

NB Crucially, we are picking the universal 2-cell and not just the 1-cell of
its target. We will later see that this ensures that the structure we choose is
coherent.

ii) 1-cell composition

For each composable pair of 1-cells •
f //•

g //• we pick a universal 2-cell as
below, and call the target gf

gf

g

44
44

44
44

f










cgf��

NB These are the only choices we have to make; the rest is now uniquely
determined.

iii) 2-cell identities (no choice needed)

Again, we use nullary universals. At this dimension they look like

• •
f u′

_*4 • •

f

f

β
��

There is a unique 3-cell in this niche, so we call its target 1f .

iv) Vertical 2-cell composition (no choice needed)

Each composable pair of 2-cells • •
α��
β��

gives a 3-niche

• •

α ��

β ��

?_*4 • •?
��
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and there is a unique cell in this niche (since we have gone above n), so we call
the target β ◦ α

• •

α ��

β ��

u_*4 • •β◦α
��

Note that although n is unique in its niche it still gives us important infor-
mation by its target. This illustrates the fact that we do need 3-cells even for a
2-category.

v) Horizontal 2-cell composition (no choice needed)

This now involves factorisations, but once the above choices have been made,
this is uniquely determined. Given 2-cells

• •

f1

g1

α
��

••

f2

g2

β
��

we have a 3-niche

g2◦g1

g2

00
00

00
00

00
00

0

g1

�������������

f1 f2

cgf

��

α
#+OOOOOO β

s{ oooooo
?_*4

g2◦g1

f2

00
00

00
00

00
00

0

f1

�������������

?
��

so we have a unique 3-cell in it, with target

g2◦g1

f2

00
00

00
00

00
00

0

f1

�������������
θ
��

say. Now θ can be “distilled” back down to a globular cell by factoring through
the chosen universal cf2f1 as shown:

f2◦f1

g2◦g1

f2

44
44

44
44

44
44

44
4

f1


















cf2f1��

!��

!_*4

g2◦g1

f2

44
44

44
44

44
44

44

f1

















θ��
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and we call the unique factor β ∗ α

f2◦f1

g2◦g1

β∗α��

vi) Associators

Again, this makes use of factorisations, and is uniquely determined once we have
made the above choices. For every composable string of 1-cells

•
f //•

g //• h //•

we seek an invertible 2-cell (hg)f ⇒ h(gf). Now we have unique (universal)
3-cells

h(gf)

h

++
++

++
++

++
+

f

�����������

g

gf

uuuuuuuuuuuuuuuuu

c
��

c
�#

????

! _*4

h(gf)

h

++
++

++
++

++
+

f

�����������

g

θ1��

h(gf)

h

++
++

++
++

++
+

f

�����������

g

hg

IIIIIIIIIIIIIIIII

c
��

c{� ����
! _*4

(hg)f

h

++
++

++
++

++
+

f

�����������

g

θ2��

and θ1 and θ2 are composites of universals, hence universal. So θ1 must factor
through θ2 uniquely (by universality of θ2):

(hg)f

h(gf)

h

++
++

++
++

++

f

����������

g

θ2��

!��

_*4

h(gf)

h

++
++

++
++

++

f

����������

g

θ1��

and we call this factor
ahgf : (hg)f ⇒ h(gf).

Moreover by universality of θ1 we also get a unique 2-cell in the other direction:

h(gf)⇒ (hg)f

and we can show that these really are inverse to one another. We must also
check naturality, which follows in a similar fashion to the associativity pentagon
below (see viii).
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vii) Unit constraints

Given a
f //b we need an invertible 2-cell Ib◦f

r //f . We use a unique 3-cell
of the form

a b

b
•

Ib◦f

Ib

44
44

44
44

f










c
��

w� wwwwww
!_*4

f

Ib∗f1

φ��

Now φ is going the wrong way, but we can get a factor using 1f :

f

f

Ib∗f

φ��

π��

_*4

f

f

1f��

giving the invertible 2-cells we require.

viii) Axioms

We must check the associativity pentagon:

(
(kh)g

)
f

(kh)(gf)

k
(
(h(gf)

)

k
(
(hg)f

)(
k(hg)

)
f

a

<<yyyyyyyyyyyyy

a

��/
//

//
//

//

a
//

a

GG���������

a

""E
EEE

EEEEEEE
EE

f

g ttttttt
h

JJJ
JJJ

J

k
RRRRRRRRRRRR

44
44

44
44

44

f

g ttttttt
h

JJJ
JJJ

J

k











 44
44

44
44

44

f

g ttttttt
h

JJJ
JJJ

J

k













llllllllllll

f

g ttttttt
h

JJJ
JJJ

J

k

llllllllllll
f

g ttttttt
h

JJJ
JJJ

J

k
RRRRRRRRRRRR

We use the following manipulations:
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1) Associator substitution:

If we have a sub-diagram

++
++

+����� IIIIIIII

we can substitute

++
++

+�����

uuuuuuuu a

where we have inserted the associator at the bottom.

2) Horizontal composite substitution:

In a similar fashion we can replace

22
22

22
22

2���������

α#+OOOO β
s{ oooo

by
22

22
22

22
2��������� β∗α��

.

An important degenerate case gives

22
22

22
22

2���������

β
s{ oooo � ,2

22
22

22
22

2��������� β∗1��

and likewise on the left.

Note that these manipulations can be made rigorous.

To check the pentagon, we then have a manipulation of the following form

oooooo OOOOOO

OOOOOOOOOOOO

44
44

44
44

44 oooooo OOOOOO









 44
44

44
44

44

a

oooooo OOOOOO











oooooooooooo a

a

oooooo OOOOOO

oooooooooooo a

a∗1

oooooo OOOOOO

OOOOOOOOOOOO
a

oooooo OOOOOO

OOOOOOOOOOOO

a∗1

oooooo OOOOOO











oooooooooooo a

a∗1

a

oooooo OOOOOO











oooooooooooo
a

a∗1

a

= =

= == =

and then by uniqueness of 2-cell composition and uniqueness of 2-cell factorisa-
tion, the components

a

a∗1
and a

a∗1

a

must be equal. All other axioms follow similarly.
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4.4.2 Category of opetopic n-categories

We form a category Opic-n-Cat by taking

• objects to be opetopic n-categories, and

• morphisms to be morphisms of underlying opetopic sets.

Remark This gives lax n-functors; if we demand that universals be preserved
we get weak n-functors.

We can compare this with lax/weak functors of bicategories. To translate a
morphism F of opetopic 2-categories into a functor of bicategories we need to
find constraints

Fg ◦ Ff ⇒ F (g ◦ f)

and

IFA ⇒ FIA.

We can examine the action of F on our chosen universal 2-cells:

gf

g

44
44

44
44

44
4

f













c
��

� //

F (gf)

Fg

44
44

44
44

44
4

Ff













Fc
��

and then we can “distil” this by factorisation to get

F (gf)

Fg◦Ff

Fg

44
44

44
44

44
44

44

Ff

















Fc��

!��

! _*4

F (gf)

Fg

44
44

44
44

44
44

44

Ff

















Fc��

giving the constraint we require. And similarly for the unit constraint.

4.4.3 Opetopic 2-categories vs bicategories

We have an equivalence of categories

Opic-2-Cat ' Bicat

for both the lax and the weak functor cases. However, this is not canonical in
either direction.
−→ In this direction the issue is choosing universal 2-cells.
←− In this direction the issue is generating opetopic shaped cells.
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4.5 Remarks on the literature

The story of the opetopic approach is a little complicated. The definition was
first presented in [4]. Different approaches to the construction of opetopes were
then proposed in [46] and [72]; these approaches were intended to give the
same idea but were not a priori the same. Then in [33] a modification to
the original Baez-Dolan approach was proposed, along lines which they had
originally followed but then chose to abandon as they thought it would give
the wrong notion of braided monoidal category. However, in [33] and [32] it
is proved that this modification results in a precise equivalence between the
three constructions of opetopes. Thus motivated, the modification is followed
through into the full definition of n-category [27] and equivalence with the theory
of classical bicategories is proved.

It must be stressed that the equivalence of the three approaches to opetopes
is not proved with the aim of discarding two out of the three. On the contrary,
the point is to benefit from the use of all three constructions simultaneously.
We rely implicitly on this equivalence in all stages of the calculations. For this
reason, rigorous exposition of the technicalities of this definition is a complicated
matter, which we have carefully avoided here.
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Chapter 5

Tamsamani and Simpson

Introduction

The idea behind the definitions of Tamsamani [107] and Simpson [93] is to
generalise the notion of nerve of a category by enriching or internalising. The
two definitions are explicitly and deliberately related: Simpson’s is a reworking
of Tamsamani’s with the aim of simplification. The result is certainly a simpler
definition, but at the cost of some generality in the resulting theory.

Given any category, we can construct its nerve, an “underlying simplicial
set”. We can then ask: when does a simplicial set arise as the nerve of a cate-
gory? Not every simplicial set arises in this way, but it is quite straightforward
to characterise those that do. Moreover, the nerve functor

N : Cat −→ SSet

is full and faithful — a functor between categories is given precisely by a mor-
phism of their nerves.

So we could define a category as follows:

A category is a simplicial set satisfying the nerve condition.

The “nerve condition” tells us, essentially, that composition of cells can be
coherently defined from the given data. We aim to generalise this to get a
definition of the following form:

An n-category is an n-simplicial set satisfying the n-nerve condition.

The “n-nerve condition” should be a higher-dimensional analogue of the ordi-
nary nerve condition; as usual with generalisations, the important starting point
is to express the base case in a form conducive to generalisation. We discuss
this further in Section 5.1.5.

For the underlying data, it is easy to define an n-simplicial set, but less
straightforward to see what the idea behind the definition is, or what pictures
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we should be imagining. The motivation can be seen from the points of view
of enrichment, or internalisation. We discuss these two related ideas in Sec-
tions 5.1.2 and 5.1.3. In Section 5.1.6 we discuss the “shortcut” Simpson uses
to bypass some of the more complicated technicalities of Tamsamani’s original
approach. In Section 5.2.2 we indulge in a large amount of picture drawing, to
give an idea of what sort of shapes arise from this definition. Only after all this
intuitive build-up do we go into the actual technicalities of the definitions.

NB Note that we use the term “multisimplicial set” instead of n-simplicial set
when we do not have a specific n in mind.

5.1 Intuitions

This pair of definitions can be thought of as generalising the notion of nerve
using a generalisation of enrichment. This is the spirit of the definition, but
formally the definition of multisimplicial sets looks more like a process of inter-
nalisation. This can be thought of as a useful technique for achieving enrich-
ment, or else enrichment can be thought of as a special case of internalisation.
Some readers may be more comfortable with one notion than another; we dis-
cuss both, and the relationship between them. First of all it helps to have a feel
for the nerve of a category.

5.1.1 Nerves

Our aim is to construct the “underlying simplicial set” of a category. This sim-
plicial set is going to capture all the information about the objects, morphisms,
and coherent composition. We start by getting a geometric feel for simplicial
sets.

What does a simplicial set X look like? A simplicial set is a functor

∆op −→ Set

so we have for each k ≥ 0 a set X(k) of cells together with various face and
degeneracy maps. We think of the following picture:

· · ·
•

•

•

•

++VVVVVV
DD			

!!D
DD

DDEE







��)

))
))

))
)

22

• •

•

// ��
22

22
22FF������

• •// •//
//

oo
oo
oo

//
//

//

//
//

oo
oo

oo
//

//

· · · X(3) X(2) X(1) X(0)

and this suggests how to construct the nerve of a category. The set X(k) tells
us about k-ary composites of morphisms. So:

• X(0) gives the objects (“nullary composites of morphisms”)
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• X(1) gives the morphisms

• X(2) tell us about composable pairs •
f // •

g // • together with their com-
posite, i.e. commuting triangles

• X(3) composable triples

— and so on.

It is worth noting that although the elements of X(k) look k-dimensional,
we use all dimensions1 for the definition of a category:

X(0), X(1) Data: objects and morphisms

X(2) Structure: composition

X(k) k ≥ 3 Properties: asserting that associativity holds

We can now think about enriching or internalising this structure.

5.1.2 Enrichment

Enrichment is one way of building up dimensions. We can think of an n-category
as a “category enriched in (n− 1)-categories” (see Introduction, Section 1.1.3).
This means that instead of having a set of morphisms A −→ B, we have an
(n − 1)-category of them; but we still have just a set of objects. There is a
well-developed theory of enrichment [57], but unfortunately this theory is strict
and so only gives us strict n-categories. Somehow we need to “enrich weakly”.
In the end, this is not explicit in the technicalities here, but this idea is one way
to understand the spirit of the Tamsamani/Simpson definitions.

The definitions of Trimble and May take the enrichment approach much
more explicitly; see Chapter 8.

Building up dimensions

The idea is to build up dimensions roughly as follows.

i) The starting point is the nerve of a category — a set of objects, a set of
morphisms, and a set of k-ary composites for all k ≥ 2.

ii) Next, a bicategory is a category somehow enriched in categories. So if a
category is a simplicial set (with conditions), then a bicategory should be
a “simplicial set enriched in simplicial sets” (with conditions). That is,
we should have a set of objects but simplicial sets of morphisms. Let us
call this a 2-enriched simplicial set.

1You don’t actually need them all: a category can be defined as a presheaf-with-properties
on the full subcategory

[0]
//
// [1]oo //

//

// [2]oo
oo

of ∆.
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iii) Next, a 3-category should be a category enriched in bicategories, or a “sim-
plicial set enriched in 2-enriched simplicial sets” (with conditions). That
is, we have a set of objects but 2-enriched simplicial sets of morphisms.
We could call this a 3-enriched simplicial set.

— and so on.

Note that, because the nerve of a category gives sets of morphisms and sets
of k-ary composites, these sets of composites will need enriching as well. So we
want something like:

An n-enriched simplicial set X is given by

• a set X(0)

• for all k ≥ 1 an (n− 1)-enriched simplicial set X(k)

with suitable face and degeneracy maps.

In fact it is much simpler to express this as a special case of internalisation.

5.1.3 Internalisation

When we enrich a category in Cat, we replace each set of morphisms by a
category of morphisms, but we leave the objects as they are. When we internalise
a category in Cat, we also replace the set of objects by a category of objects.
This gives an “internal category in Cat” or “category object in Cat”.

Unfortunately a category object in Cat is not a 2-category but a “double
category”, in which the 2-cells look like

• •

• •

//

�� // ��
��

instead of • •

>

>

��
. (5.1)

We can force a double category to be a 2-category by asserting that all mor-
phisms in the category of objects must be identities. Effectively this collapses
the sides of the square in (5.1) and ensures that we have globular, not cubical
morphisms.

Schematically we have the following diagram showing how the processes of
enrichment and internalisation are related:

Cat 2-Cat

Double-Cat

enrichment //_________

internalization
##G

G
G

G
G

non-cubical

;;w
w

w
w

w

.

We can copy this process for simplicial sets, and iterate the process of “inter-
nalising simplicial sets in simplicial sets”:
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An n-simplicial set is a simplicial object in (n− 1)-simplicial sets.

We will then need to impose a “non-cubical” condition on our n-simplicial
sets to ensure that we do not end up with cubical n-categories; equivalently this
is to ensure that we are only enriching morphisms and not objects. This is the
first of two conditions we will impose on an n-simplicial set in order for it to be
the nerve of an n-category; the second is the so-called “nerve condition”. The
following tables summarise the relationship between these notions:

category ≡ simplicial set

+ nerve condition

category object in V ≡ simplicial set object in V

+ nerve condition

category enriched in V ≡ category object in V ≡ simplicial set object in V

+ non-cubical condition + non-cubical condition

+ nerve condition

Now put V = (n− 1)-Cat:

category enriched ≡ category object ≡ simplicial object

in (n− 1)-Cat in (n− 1)-Cat in (n− 1)-Cat

+ non-cubical condition + non-cubical condition

+ nerve condition

||| |||

n-category simplicial object in (n− 1)-SSet

+ non-cubical condition at all dimensions

+ nerve condition at all dimensions

The point of the final entry in the bottom right is that the conditions we
impose “commute” with the induction process. That is, instead of demanding
the necessary conditions at each stage of the induction, we can do the whole
induction first and then demand the conditions on all dimensions at the same
time. It turns out that the latter approach is much easier technically.

5.1.4 The definition of multisimplicial sets

Motivated by the above considerations, we have a definition of n-simplicial sets
as “simplicial objects in (n− 1)-SSet”, that is:
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The category n-SSet of n-simplicial sets is the category of functors

[∆op, (n− 1)-SSet]

where we start by putting 1-SSet = SSet.

There is one final move that makes the definition of multisimplicial set look
quite unlike either enrichment or internalisation, but makes it rather more tech-
nically convenient. Observe that for n = 2 we can use cartesian closedness as
follows:

2-SSet = [∆op, [∆op, Set]]
∼= [∆op ×∆op, Set]
∼= [(∆2)op, Set]

and in general we can do this n times to get

n-SSet = [(∆n)op, Set].

In Section 5.2.2 we will discuss how these two presentations give us two ways
of picturing a multisimplicial set.

5.1.5 The nerve condition

In this section we will study the nerve condition for ordinary categories and
indicate how to generalise the condition to characterise/define n-categories.

We must consider the following question:

Question: When is a simplicial set the nerve of a category?

The answer to this question is well understood, but we will give the answer
several times, gradually working it into a form suitable for generalisation into
higher dimensions.

Answer 1: For every pair of composable 1-cells •
f // •

g // • there must be

a unique 2-cell

•
g

  @
@@

•

f >>~~~
h

// •
so that we have well-defined composition. And for

every string of k composable 1-cells •
f1 // •

f2// · · ·
fk // • there must be a unique

k-cell, to ensure associativity.

Answer 2: There are isomorphisms
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{ set of composable pairs } ∼= { set of 2-cells }

...

{ set of composable strings of length k } ∼= { set of k-cells }

...

Answer 3: For each k there is a canonical function

{ set of k-cells } −→ { set of composable strings of length k }

k-cell 7→ the k 1-cells we’re considering composing

This canonical function comes from the appropriate face maps; we will see
later how to construct it precisely. For a simplicial set to be a nerve, this
function must be an isomorphism for each k.

Generalisation into n dimensions.

To generalise this nerve condition we use the fact that a function between sets is
really a 0-functor between 0-categories. So for the n-dimensional case we should
be looking for a canonical (n− 1) functor

(n − 1)-category
of k-cells

(n − 1)-category of composable
strings of length k

//

We call these the Segal maps for composition. For an n-simplicial set to be
the nerve of an n-category, we demand that each of these (n − 1)-functors be
an (n− 1)-equivalence of (n− 1)-categories.

5.1.6 Simpson’s helpful shortcut

The approach outlined in the previous section is more or less what Tamsamani
does. Simpson then simplifies the situation by taking the n-nerve condition on
(n−1)-functors and turning it into a condition about the underlying morphism of
(n−1)-simplicial sets. This can be thought of as an unravelling of Tamsamani’s
inductive definition, to achieve a more direct approach. There is a small price
to pay, hence the slight loss of generality in Simpson’s definition.

The idea of the shortcut can be illustrated in the 1-dimensional case: if we
want to show that a functor F : C → D is an equivalence, how much of the
category structure do we actually need? We can use the characterisation that
says F is an equivalence if and only if it is

i) essentially surjective on objects, and

ii) full and faithful.
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For condition (i) we need to know what the isomorphisms in D are, so this does
require some knowledge of the category structure of D. However, for condition
(ii) we only need to know what the hom-sets are — we don’t need to know about
any of the category structure beyond that.

We can even get around (i) by demanding surjectivity “on the nose”, so that
we don’t need to know about composition in the category at all. We do lose
some generality, but certainly any such functor will be an equivalence. This is
the essence of what Simpson’s definition says, and why some generality is lost.

The final useful observation to make is that a functor between categories is
precisely a map of the underlying nerves — functoriality is guaranteed by the
simplicial set structure.

5.1.7 The shape of the definition

The definition then looks like this:

An n-category is an n-simplicial set such that

i) we have avoided becoming cubical, and

ii) Tamsamani: each Segal map for composition of m-cells is an
(n−m)-equivalence of (n−m)-categories

Simpson: each Segal map for composition of m-cells is a “contractible”
map of (n−m)-simplicial sets

Contractibility is what Simpson uses to characterise equivalence using only the
underlying simplicial set structure.

5.2 Multisimplicial sets

We begin this section with the dry technical definition of a multisimplicial set
and then move on to a big picture-drawing section.

5.2.1 The definition

Technically a simplicial set is a functor

∆op → Set

so we write
SSet = 1-SSet = [∆op,Set].

An n-simplicial set is a functor

∆op → (n− 1)-SSet

so by cartesian closedness we have

n-SSet = [∆op, (n− 1)-SSet] ∼= [(∆n)op, Set].
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Thus, an n-simplicial set can be thought of equivalently as a functor

∆op −→ (n− 1)-SSet or (∆n)op −→ Set.

The first way may be more intuitively clear but the second is useful as the
induction has been unravelled, and it gives a very convenient way of writing
everything down.

In fact there are many other presentations in between, as we progressively
invoke closedness to “move” a ∆op over to the domain. Furthermore, it depends
which ones we have moved. So we have various alternatives of the form

(
∆m

)op
−→ (n−m)-SSet.

The idea is that if we fix m “coordinates” of an n-simplicial set, we will be left
with an (n −m)-simplicial set. For example, in the 2-dimensional case, every
row and column is itself a simplicial set. In the next section we will see how
this is useful working out what the pictures should look like.

5.2.2 A long pictorial discussion of shapes

In this section we aim to give more intuition about what an n-simplicial set
“looks like” — what pictures to have in mind and how the pictures correspond to
the notation. Unfortunately it is a bit hard to draw the n-dimensional diagrams
on a 2-dimensional piece of paper. Since we’re only interested in n-simplicial
sets satisfying the non-cubical condition, these are the only ones we will attempt
to draw. (We will explain this non-cubical condition more in Section 5.3.2.)

A non-cubical 2-simplicial set might be depicted as follows:
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•
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where we are only drawing the underlying shapes of the elements, omitting all
the labels.

If we write A for the presheaf
(
∆2
)op
−→ Set in question, then the positions

in the above “grid” correspond to the presheaf notation as follows:

· · ·A(3, 1)

· · ·A(3, 0)

· · ·

A(2, 1)

A(2, 0)

// //
//
//

////
//
//

A(1, 2)

A(1, 1)

A(1, 0)

//////

//////

////
//

A(0, 2)

A(0, 1)

A(0, 0)

////

////

////
���� ��������

���� ������ �� ���� ��

where the arrows shown come from the face maps in ∆. These are the maps that
give us the “clues” as to what these shapes “look” like — we should stress the
fact that this is just a geometric interpretation (realisation) of what is technically
only a combinatorial object. But we find it helpful to think of it in this pictorial
way.

Explanation of the above pictures

i) The right hand column is “constant” — this comes from the non-cubical
condition. See Section 5.3.2 for further explanation.

ii) A(1, 0) comes with two maps to A(0, 0) which we think of as source and
target; hence we think of elements of A(1, 1) as arrows

a
f // b .

iii) A(2, 0) comes with three maps to A(1, 0) telling us there should be three
constituent components −→. Commuting conditions involving maps to
A(0, 0) tell us that these should be arranged in a triangle shape as shown.

iv) We remarked in the previous section that every row and column is itself
a simplicial set. So the column A(1,−) (second from the right) should
somehow resemble the “generic simplicial set” as seen in the row A(−, 0)
(bottom row). See (v) and (vi) below.

v) A(1, 1) comes with several commuting squares given by

A(1, 1)

A(1, 0)

A(0, 1)

A(0, 0)

s //
t

//

s //
t

//

t

��

s

��

t

��

s

��
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(commuting serially). Also the right hand side is degenerate (s = t = 1)
by the non-cubical condition, and we can check that this means the whole
thing reduces to globularity, hence the picture

• •
��
EE�� .

This can be thought of as an “arrow of 1-cells”, as the 1-cell “−→” is
playing the role of “object” in the simplicial set that is the A(1,−) column.

vi) A(1, 2) should therefore be a “triangle of arrows of 1-cells” since it is in
the triangle position of the A(1,−) simplicial set. If you have difficulty
seeing how

• •//
��
EE

α ��

β ��
V • •

��
EEγ

��

is a triangle of 2-cells, try drawing it on an orange. Score the skin as if
you are dividing the orange into thirds and mark the thirds α, β, γ. Then
look at the orange head on, where the three lines meet.

γ

α

β

�
�
�
�
�

s s s s s

KKKKK

α

4<

β

��

γ
7?

vii) A(1, 3) will be a tetrahedron of 2-cells. We can represent this as

• •//
��
FF

β ��
γ ��

V • •
��
FF��

• •//
��
FF

��
γ ��

V • •
��
FFδ ��

b�

• •//
��
FF

α ��
β ��

V • •
��
FF��

• •//
��
FF

α ��

��
V • •

��
FFδ ��

_LR
!=

(5.2)
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One way to see how this is a “tetrahedron of 2-cells” is to remember that

• •//
��
EE

��
��

V • •
��
EE�� is a “triangle of 2-cells”, and note that we can

decompose a tetrahedron as

---------

���������

sssssssssssssss

_*4

---------

���������

KKKKKKKKKKKKKKK

where the outer edges are identified. Or we could even decompose it to

---------

���������

sssssssssssssss
sssssssssssssss

;;
;;

;;
;

{�#

_*4 ���������

---------

KKKKKKKKKKKKKKK
KKKKKKKKKKKKKKK

��
��

��
�

C{�

making it look like much more like Diagram 5.2 above.

viii) A(2, 1) is an “arrow of triangles ” — we are now in the simplicial set of
the A(2,−) column, where the objects are triangles. However, we are also
in the simplicial set of the A(−, 1) row, so this could be thought of as a
“triangle of 2-cells composing horizontally.”

Observe also that we have five face maps

A(2, 1)

A(2, 0)

A(1, 1)
//
//
//

����

telling us there should be two constituent triangles and three constituent
globular 2-cells. We also have various commuting conditions telling us
how the edges match up.

We can represent this as a “collapsed prism”

VVVVVVVVV












))))))))))

VVVVVVVVV

����������

)))))))))))

where the long equalities (shown between matching vertices of the trian-
gles) collapse the rectangular faces into globular faces — the non-cubical
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condition at work. Another way to draw this is
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the latter of which might remind the reader of the process of finding hori-
zontal composites of 2-cells in the opetopic theory. Here is an attempt at
a drawing of the 3-dimensional figure

θ3

�� �
��
�

��
��

θ1

��

θ2
&.TTTT TTTT

For an even better idea of the shape, cut out the triangles below.
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B C

A

α

B C

A

β

f f1 2

g g1 2

g
3

f3

Staple the matching corners, and place a small object in between to give
it some 3-dimensionality. Then observe the θi in the gaps between the
edges

f1

g1

θ1�� ,

f2

g2

θ2�� ,

f3

g3

θ3�� .

ix) A(3, 1) is already approaching the extremity of what we feel we can com-
fortably represent on 2-dimensional paper. We now need a “morphism
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of tetrahedra” or a “tetrahedron of 2-cells.” The diagram shown in the
grid on page 79 uses the above technique of identifying the matching ver-
tices along the elongated equality signs. In this way, mediating between
each matching face of the small and large tetrahedra we have a collapsed

prism — an element of A(2, 1) (see viii). So we have one 2-cell �� at

each edge of a tetrahedron — hence a “tetrahedron of 2-cells.” Here is
an attempt at drawing the 3-dimensional figure with one concave and one
convex tetrahedron;

Sadly, we’re cheating even like this — really this should be a 4-dimensional
figure and we have no right to put one tetrahedron inside another. We
could draw it like this

VVVVVVVVVVV
							

DDDDDDDDDDD
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eeeee
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eeeeeeee

eeeee

))))))))))))))

(5.3)

emphasising that the identification of those vertices goes “through” the
tetrahedra, and hence we must be using a fourth dimension.

x) We can now attempt an element of A(2, 2) in the same spirit as (5.3)
above: we make a triangle of triangles

rrrrrrr

OOOOOOO

rrrrrrr

OOOOOOO rrrrrrr

OOOOOOO
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which collapses to

!= .

xi) Similarly we can attempt an element of A(3, 3). Using the shorthand
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for the diagram (5.3) above, we make a tetrahedron of tetrahedra
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Another useful way of cheating

Finally, here is a way of cheating even further in our picture-drawing: we sup-
press all the “simplicial” parts of the diagrams, emphasising only the cells we
are considering composing. We give some examples for n = 3, so the set of
A(k1, k2, k3) refers to composition of

• k1 1-cells end to end,

• k2 2-cells end to end, and

• k3 3-cells end to end.
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We will draw the 3-dimensional grid as a series of cross-sections, one “face”
at a time.

The first face A(−,−, 0):
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·
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The second face: A(−,−, 1):
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The third face A(−,−, 2).
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Note that this is for a functor

A : (∆3)op −→ Set

(k1, k2, k3) 7→ A(k1, k2, k3)

and if we fix any two of the “coordinates” we get a functor

∆op −→ Set

i.e. every row, column and row-sticking-out-of-the-page is itself a simplicial set.
Furthermore, fixing one coordinate we get that every plane either in the page
or perpendicular to it is a (non-cubical) 2-simplicial set.

5.3 Simpson’s definition

5.3.1 The definition

We now give the actual definition for the Simpson case and discuss how the
formalities match up with the fuzzy intuitions we have given so far.

Definition A weak n-category is a functor

A: (∆n)op −→ Set

such that for each 0 ≤ m ≤ n− 1, and K = (k1, k2, . . . , km) ∈ ∆m

i) the functor A(K, 0,−): (∆n−m−1)op −→ Set is constant and

ii) for each k ∈ ∆ the “Segal map”

A(K, k,−) −→ A(K, 1,−)×A(K,0,−) · · · ×A(K,0,−) A(K, 1,−)

is contractible.
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Condition (i) is the non-cubical condition discussed previously. Condition
(ii) tells us that the Segal maps for composition are equivalences. The techni-
calities of the above definition will be explained in the sections that follow.

5.3.2 The non-cubical condition

Why does condition (i) mean we are not cubical? Note that A(K, 0,−) is short-
hand for

A(k1, k2, . . . , km, 0,−,−, . . . ,−)
︸ ︷︷ ︸

n-m-1
blank spaces

(m+1)th place

_��

So we’re looking at a ki-length of i-cells for each i up to m, and no (m+1)-cells.
The point is that if there are no (m+1)-cells in a pasting diagram then we can’t
have anything “interesting” at higher dimensions — only identities, so it should
keep on being the same set. Hence no matter what lengths we plug in as the
highest dimensional “coordinates”, the set of cells remains constant.

We encourage the reader to fill in the coordinates of the 3-dimensional grid
on page 87 to see this “stabilisation” condition at work.

Aside for the curious

The reader might wonder what 3-dimensional geometrical shape this would look
like if we actually omitted the parts that have “stabilised”:

k

k

k1

2

3
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We’re undecided about how illuminating this is, but it does satisfy our curiosity
on the matter.

We could even try to draw the 4-dimensional case as a “movie” of 3-dimensional
figures. The first would be as above, giving A(−,−,−, 0). Then for A(−,−,−, 1)
we have

k

k

k1

2

3

(1,1,1)

Note that the corner shown is (1, 1, 1) i.e. this figure does not touch any axis —
it has been shaved off along every axis. Another way to think of it is that the
protruding parts of the first diagram have been amputated.

5.3.3 Segal maps for composition

We mentioned earlier that the “Segal maps for composition” are canonical.
This is because they are induced by a limit — a “wide pullback”. Following the
notation in [69], we write σ, τ for the two embeddings of 0 into 1, and

ι1, . . . , ιk: 1 −→ k

for the k embeddings of 1 into k. Then the following diagram

1 1 1 · · · 1

0 0 0

k

ι1

::ttttttttttttttttt

ι2

GG���������

ι3

WW/////////

ιk

iiRRRRRRRRRRRRRRRRRRRRRRRRRRR

τ

__????? σ

??����� τ

__????? σ

??����� σ

??�����

(5.4)
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commutes in ∆ and can be thought of as representing the following situation:

• •// • •// • •// · · · • •//

• • •

• •// •// •// · · ·• •//

M

FF ^

NN������������ l

UU,,,,,,,,,,,,
�

ddHHHHHHHHHHHHHHHHHHHH

m

VV-------- S

II������� m

VV-------- S

II������� S

II�������

︷ ︸︸ ︷

k arrows

So the index k is going to be the number of cells we are thinking about com-
posing, at the relevant dimension. Now the “wide pullback”

X(1)×X(0) X(1)×X(0) · · · ×X(0) X(1)

gives us k instances of single cells at the relevant dimension — the pullback
condition ensures that this is a composable string, i.e. the single cells match
end-to-end.

Thus, the image in X2 of diagram (5.4) induces a canonical morphism to
the wide pullback as below:

X(k) −→ X(1)×X(0) X(1)×X(0) · · · ×X(0) X(1).

Note that this is just a limit in Set.

Now, in the actual definition the description looks much more complicated
because we have to do it for every shape of cell at every dimension. So first we
fix the dimension (m + 1) of cells we’re thinking about composing, and then we
fix the actual shape of cell we’re composing, i.e. the lengths of all of the lower
dimensional cells involved — (k1, . . . , km) in the formula. So we get a canonical
map

2Note that technically X is a functor so perhaps we ought to say “the image under X”.
But if we’re thinking of X as some kind of set of cells, it might sound more natural to think
of the image in X, which is what we prefer.
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A(k1, k2, . . . , km, k,−,−, . . . ,−)

A(k1, k2, . . . , km, 1,−,−, . . . ,−)×A(k,0,−) . . .×A(k,0,−) A(k1, k2, . . . , km, 1,−,−, . . . ,−)

��

︸ ︷︷ ︸

k times

k of the (m + 1)-cells
we’re interested in composing

1 of the (m + 1)-cells
we’re interested in composing

_��

_��

Some examples may help to illustrate the point.

Example 1 A(2, 0) −→ A(1, 0)×A(0,0) A(1, 0)

f2

44
44

44
44

4

f1












� //

• •

•

f2

��4
44

44
44

f1

DD








Example 2 A(3, 0) −→ A(1, 0)×A(0,0) A(1, 0)×A(0,0) A(1, 0)

//

---------

��

//���������

HH

KKKKKKKKKKKKKKK

%%99f1

f2

f3

� //

• •

• •-------
��

//
�������

HHf1

f2

f3

Example 3 A(1, 3) −→ A(1, 1)×A(1,0) A(1, 1)×A(1,0) A(1, 1)

• •//
��
EE

α ��
β ��

V • •
��
EE��

• •//
��
FF

��
γ ��

V • •
��
FF��

o��

• •//
��
EE

β ��
γ ��

V • •
��
EE��

• •//
��
FF

α ��

��
V • •

��
FF��G=G

_*4 � // • •
��
AA
��
IIβ ��

α ��

γ ��
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Example 4 A(2, 2) −→ A(2, 1)×A(2,0) A(2, 1)

��
��

�� ����

�� ����

+3 +3
V

��

�� 





+3 � //

��
��

�� ����

�� ����

+3 +3

Example 5 A(1, 1, 2) −→ A(1, 1, 1)×A(1,1,0) A(1, 1, 1)

���% y�

α_*4 β_*4• •
��
DD V

�# {�

_*4• •
��
DD

� //

���% y�

α_*4 β_*4• •
��
DD

5.3.4 Contractibility

We are going to demand that each Segal map for composition is contractible.
The idea is that for every “pasting diagram” of cells, there should certainly
exist a filler giving a composite — this will be a pre-image under the Segal map.
But further, the “space of composites” lying over a pasting diagram should be
contractible — that is, each Segal map should be contractible.

Question: Why don’t we have to demand or ensure that

i) the hom(n− r)-structures really are (n− r)-categories,

ii) the Segal (n− r)-maps really are (n− r)-functors?

Answer:

i) — comes inductively from the fact that we place our condition on Segal
maps at all dimensions.

ii) — is implied by (i), just as maps of nerves are automatically functors
between the corresponding categories.

The globular part of a multisimplicial set

We might notice that elsewhere (e.g. in globular definitions, Chapters 2 and 3)
contractibility is defined for maps of globular sets, whereas here we are consid-
ering maps of multisimplicial sets.

In fact, we can restrict our attention to the globular shapes here as well, and
concentrate only on the map’s action on the “globular part” of the multisimpli-
cial set. The idea is:
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The action of the map on globular shaped cells is the part that ac-
tually tells us what the action of the functor is; the rest is just to
ensure functoriality.

So we need to find the “globular part” of a multisimplicial set. An n-simplicial
set has a n-globular set as its globular part. The globular cells are given by

A(1, 1, . . . , 1, 0, 0, . . . , 0) ≡A(Ip) = globular p-cells
︸ ︷︷ ︸ ︸ ︷︷ ︸

p n− p

One 1-cell wide

One 2-cell high

One 3-cell out-of-page
...

One p-cell

_LR

So this says that we are not composing any cells end-to-end.

Remark The amount of restriction involved here makes it quite apparent how
much more information is contained in an n-simplicial set than an n-globular
set.

The source and target maps can be defined as they “should” be for a globular
set, and we can then define parallel cells as in the usual globular case, with either

i) x, y are 0-dimensional, otherwise

ii) x, y have the same source and target.

The definition of contractible map

The definition of “contractible” for a map φ proceeds just as in the globular
theory in the case of Leinster (lifting everything, not just identities; see Sec-
tion 3.3.1), with one extra condition for each extremity:

1) 0-dimensional extremity:

The map must be surjective on objects.

2) The usual lifting property:

Given parallel p-cells x, x′ and a p-cell h: φx −→ φx′

there exists g: x −→ x′ such that φg = h.
(Compare with the definition of full).
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3) n-dimensional extremity:

Given parallel n-cells x and x′ such that φx = φx′ we must have x = x′.
(Compare with the definition of faithful).

Note that we do not have to demand faithfulness at lower dimensions, as
faithfulness at k dimensions is ensured by fullness at (k+1) dimensions, together
with the presence of degeneracies. This is why for the case n = ω in the globular
theories there is no explicit demand of faithfulness; it can always be taken care of
by fullness at the dimension above. We will discuss this further in Section 5.4.7.

Finally we emphasise that in this definition we demand only “contractibility”
unlike the specified contraction demanded elsewhere (e.g. Leinster and Penon).

5.4 Tamsamani’s definition

We now discuss what Tamsamani originally proposed. First recall the general
shape of the definition.

An n-category is an n-simplicial set in which

i) we are not cubical, and

ii) for each m-cell, the composition (n −m)-map is an (n −m)-
equivalence of (n−m)-categories.

Simpson simplifies condition (ii) by

1) looking at just the underlying maps of (n−m)-simplicial sets, and

2) using surjective equivalence.

Tamsamani on the other hand

1) checks that the underlying structures really are (n−m)-categories, and

2) uses essential surjectivity, i.e. surjectivity only up to “internal equiva-
lence”.

In order to understand Tamsamani’s definition we have to define internal
equivalence of m-cells. The method is to use higher dimensions to give an
equivalence relation on m-cells which will be called “internal equivalence”; the
difficult part is ensuring that the relation is actually an equivalence relation.
The notion of truncatability is introduced to deal with this issue.

5.4.1 Internal vs external equivalence

We recall briefly the difference between “internal” and “external” equivalence:

• external equivalence is a relation on actual n-categories, and is given by
n-functors satisfying certain properties
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• internal equivalence is a relation on k-cells inside an n-category, and is
given by (k + 1)-cells satisfying certain properties

The two notions should coincide in an (n + 1)-category of n-categories — the
0-cells are n-categories, and internal equivalence of those 0-cells should coincide
with external n-equivalence of the n-categories in question (if only we knew
what any of this meant).

5.4.2 Iterative approach to external equivalence

We will be modelling the definition of r-equivalence on the following character-
isation of equivalence of categories

A functor is an equivalence if and only if

1) local behaviour: it is an isomorphism on homsets (i.e. full and
faithful), and

2) on objects: it is essentially surjective on objects.

So we will seek an r-functor satisfying

1) local behaviour: it is an (r − 1)-equivalence on hom-(r − 1)-categories,

2) on objects: it is essentially surjective on 0-cells.

Note that to “unpack” this definition we only need to know

A. what is an isomorphism of sets (i.e. 0-equivalence of 0-categories), and

B. what is internal equivalence of k-cells for each k ≥ 0 (in order to define
essential surjectivity).

(A) is easy; for (B) we will iterate the skeleton construction.

5.4.3 The skeleton of a category

The skeleton construction can be thought of as a way of reducing the number of
dimensions to think about. Given a category C we can “quotient out by isomor-
phisms” to produce the set X of isomorphism classes of objects. Equivalently
this is the set of objects of the skeleton of C. We get a quotient map

q: ob C −→ X

and the relation
a ∼= b ∈ C ⇐⇒ q(a) = q(b).

This last condition holds as long as C really was a category ; otherwise we might

not get an actual equivalence relation, as we could have a
∼ // b ∼ // c without

a
∼ // c . If we’re doing this on simplicial sets, this amounts to the fact that we

must start with a nerve.
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Remark Quotienting is generally a violent act. Thus the skeleton construc-
tion is more of a destruction than a construction.

5.4.4 Iterating the skeleton construction

Suppose we have an n-simplicial set. We will define internal equivalence of m-
cells from the top down, by gradually quotienting our way down to the mth
dimension. This iterative approach3 can be described as follows:

• n-cells are internally equivalent if and only if they are equal

• provided the top dimension really is a nerve, we can perform the quotient
on (n− 1)-cells to get a notion of internal equivalence of (n− 1)-cells

• provided this first quotient produced a nerve at the next dimension down,
we can perform the quotient on (n − 2)-cells to get a notion of internal
equivalence of (n− 2)-cells

— and so on.

We just need to demand that each stage of quotienting produces a nerve. This
is the notion of truncatability.

5.4.5 Truncatability

Motivated by the discussion above, an n-simplicial set is called truncatable if
(informally)

i) the top dimension is a nerve, and

ii) every stage of quotienting produces a nerve at the next dimension down.

So the issue is not simply whether we can truncate the top dimensions, but
more subtlety, whether we can sensibly “sew up the ends” after this progressive
beheading.

5.4.6 Wrong ways to prove coherence for bicategories

It is worth thinking about two obvious wrong ways to prove that every bicate-
gory is biequivalent to a 2-category.

• 1st wrong way: identify all (hg)f with h(gf), and all I ◦ f, f, f ◦ I

Mistake: we do get something biequivalent
but don’t necessarily get a strict 2-category

— because (hg)f = h(gf) does not necessarily mean ahgf is the identity.

3Note that technically we’re not iterating the whole of the skeleton “construction” — we
only find the objects and not the morphisms of the skeleton.
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• 2nd wrong way: quotient down to a category by turning all 2-cell
isomorphisms into identities and ignoring all the others.

Mistake: we do get a strict (in fact locally discrete) 2-category
but don’t get a biequivalence

— because the quotient map is not faithful.

Nevertheless, the 2nd wrong way is useful for reducing dimensions. Another
way to think of it is that we are literally performing a contraction:

• Elsewhere, we approach contraction from the lower dimensions and lift
everything up.

• Here, we start at the higher dimensions and squash everything down.

The idea of internal equivalence of m-cells α and β is then the following:

We put α ∼ β if, when we quotient all the way to m dimensions, α
and β get identified.

5.4.7 External equivalence of r-simplicial sets

We now put the above components together to arrive at the definition of external
equivalence that we need. Consider a morphism of r-simplicial sets

φ : X −→ Y

We say φ is an equivalence if

i) φ is essentially surjective on objects, i.e. surjective up to internal equiva-
lence, and

ii) locally, φ is essentially surjective on k-cells for all k.

In both cases we demand that the essential pre-images be unique up to inter-
nal equivalence. These two conditions correspond to the two conditions given
formally in [69].

NB Technically X and Y are functors (∆r)op −→ Set, so φ is a natural
transformation

(∆r)op Set

x

$$

y

::φ
��
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Remark on Equivalence

It is worth thinking about why only (essential) surjectivity is required at each
dimension, and not something corresponding to (essential) injectivity. This
relates to the remark at the end of Section 5.3.4.

In 0 dimensions, an “equivalence” is an isomorphism of sets. A function

F : X −→ Y

is an isomorphism if and only if

i) it is surjective, and

ii) it is injective.

In 1-dimension, a functor

F : C −→ D

of categories is an equivalence if and only if

i) it is essentially surjective on objects

ii) it is locally surjective and injective on morphisms.

Question: Why does injectivity only appear at the top dimension? That is,
why don’t we need to stipulate “essential injectivity” on objects?

Answer: Because “essential injectivity” would mean something like

Fx ∼= Fy ⇒ x ∼= y

which follows from full-and-faithfulness.

Similarly, if we had 2-cells we could drop “injectivity on 1-cells” since it would
be dealt with by full-and-faithfulness on 2-cells.

So we only ever need injectivity at the nth dimension, and only if there is no
(n + 1)th dimension to deal with it automatically. (If we had a headshrinking
approach rather than a beheading approach we still would have an (n + 1)th
dimension that could serve this purpose, among others.)

Note that in Tamsamani’s case, demanding that the pre-images be “unique
up to internal equivalence” ensures injectivity at the top dimension, since in-
ternal equivalence at that level corresponds to equality. However, Tamsamani
also demands this essential uniqueness at all dimensions; the above discussion
suggests that at lower dimensions this condition is redundant.
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5.4.8 Conclusion

Simpson slims down the definition by demanding surjectivity at every level until
the top where we need injectivity as well. Simpson expresses this in terms of
contractibility which plays the role of Tamsamani’s use of equivalence.

Finally we remark that this contractibility tells us that “suitably coherent
composition exists”; in Batanin’s definition contractibility is verifying the co-
herence of a pre-existing composition which is given by another mechanism.



Chapter 6

Street

6.1 Introduction

Street’s definition of weak ω-category [102] was the first to appear. The idea
is, like Simpson/Tamsamani [93, 107], to generalise the nerve of a category,
but here the underlying data is a simplicial set not a multisimplicial set. We
will discuss the difference later. In fact, the definition itself is not the central
aim of [102]. The aim is to construct the nerve of a strict ω-category, with
n-cohomology as motivation. Like the nerve of an ordinary category, the nerve
of an ω-category is to be a simplicial set.

In the closing paragraphs of [102], Street

i) conjectures a condition on simplicial sets to characterise those that arise
as nerves in this way

ii) observes that in the case of (weak) bicategories, this condition is satisfied
except for a certain “uniqueness” clause

iii) suggests removing the word “unique” from the condition and using the
result as a notion of weak ω-category.

He goes on to prove the conjecture in a later paper [103]. The main part of
the condition says:

Every admissible horn has a unique hollow filler.

A horn is, essentially, a simplicial cell with one face missing, and no interior.
This is a weakened version of the much more straightforward condition for ω-
groupoids that says “every horn has a unique filler.” The difference is that
we now have to allow for non-invertible cells which, unsurprisingly, makes the
situation rather more complicated.

Street’s method is highly combinatorial and it is quite easy for the geomet-
ric intuitions to be lost among the complicated (and seemingly magic) com-
binatorics. So it is our intention to bring out the intuitions and say rather
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little about how the actual combinatorics work out. Street himself is admirably
candid in remarking that the conjecture was a matter of pattern-spotting in
low-dimensional examples.

6.1.1 Why simplicial sets and not multisimplicial sets?

A beam of white light splits into a whole spectrum of colours as it
passes through a prism. Street’s approach is like a beam of white
light where the multisimplicial approach is like a prism enabling us
to see all the colours that make up the white light.

In the multisimplicial approach each “multisimplicial shape” has one very spe-
cific role. Some shapes are for composition only, some are “genuine cells” and
others are for associators or interchange, but the general idea is that each shape
should only have one role to play. Using ∆n and not just ∆ gives us more shapes
so that we can distinguish between those roles, like splitting out the colours of
the rainbow.

In the simplicial approach on the other hand, any particular shape can play
different roles for different dimensions of cell:

• a 2-dimensional shape gives

i) 2-cells

ii) composition for 1-cells

• a 3-dimensional shape gives

i) 3-cells

ii) composition for 2-cells

iii) associators for 1-cells

• a 4-dimensional shape gives

i) 4-cells

ii) composition for 3-cells

iii) associators for 2-cells

iv) pentagons for 1-cells

So we have the following “diffraction diagram”:

0-cells 1-cells 2-cells 3-cells 4-cells 5-cells

0-cells 1-cells 1-composition 1-associator 1-pentagon 1-hexagon

2-cells 2-composition 2-associator 2-pentagon

3-cells 3-composition 3-associator

4-cells 4-composition

5-cells



6.1 Introduction 103

In fact the full multisimplicial picture is even more “diffracted” than this, giving
an n-dimensional “rainbow” rather than the 2-dimensional one shown above.

The point is that the nerve functor

Cat −→ SSet

is very far from being surjective — simplicial sets have a great deal of expres-
sive power left untapped when we use them to express mere categories. As k
increases, k-cells become more and more redundant. In the nerve of a category
3-cells tell us about associativity, but 4-cells tell us nothing new. So there is
plenty of “leftover space” available there to express the extra structure we want
for 2-categories, 3-categories and so on.

The “beam of white light” is wonderfully compact but it does mean we have
to do something else in order to see all the hidden “colours”. In particular, we
want to have a handle on the difference between “genuine cells” (as shown on
the bottom diagonal edge of the “rainbow”) and cells that are playing some sort
of structure-giving role.

Street uses simplicial sets with certain cells picked out to play that structure-
giving role. A priori these are just any old cells picked out and distinguished.
The conditions then assert that these cells are actually suitable to play the
structure-giving role that we want. Note that these cells are called “hollow”
but hollowness is not a property that is inherent to them. We might just as well
call them purple.

Remark on hollowness

We might think it is desirable to have “hollowness” as an inherent property
rather than as added structure. This is one of the motivations for the use
of “universal cells” in the opetopic definition; see Remark at the end of Sec-
tion 6.1.4. In fact, Street also modified his original definition along these lines
in a later paper [105].

6.1.2 Why this definition is “natural”

There are two more points worth noting that make this “beam of light” approach
seem natural. We mention them briefly here and discuss them in more detail
later.

Why it is natural: technically

Finding the nerve of a category is reduced, by abstract categorical arguments,
to finding a functor

∆ −→ Cat
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and making use of the Yoneda embedding to get

∆ [∆op,Set]

Cat

Yoneda //

��?
??

??
??

??
??

??

nerve
functor

??

��

��
??

One natural way to generalise this for ω-categories is to find a functor ∆ −→ ω-Cat
and get

∆ [∆op,Set]

ω-Cat

//

��?
??

??
??

??
??

??

nerve
functor

??

��

��
??

Thus the nerve of an ω-category arises as a simplicial set, not a multisimplicial
set.

Why it is natural: ideologically

Even Street’s definition of strict ω-category is like a beam of white light com-
pared with other definitions. The underlying data is a set, not a globular set —
that is, cells of all dimensions have gone into the same set and the dimensions
have vanished. The dimensionality is taken as, not an a priori property, but
a consequence of the structure that is then given to this set. In the light of
the succinct nature of this definition, the succinctness of Street’s final definition
seems quite natural.

6.1.3 What is all the complicated combinatorics about?

The original paper [102] is called “The algebra of oriented simplexes” and es-
sentially the complicated combinatorics is all about the question of orientation.

Simplices can be thought of as a combinatorial tool very well suited for
dealing with topological spaces. But the algebraic structure that most naturally
arises is then not a category but a groupoid, since all morphisms are invertible.
If we do not want every cell to be invertible we have to decide which way the
morphisms are pointing.

• 1-cells: an arbitrary choice −→ or ←−

• 2-cells: we have to decide how to orient the boundary as well as the middle

• •

•

// ��
44

44
44DD





 �� or

• •

•

// ��
44

44
44DD







KS
.
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Note that at 2 dimensions another issue arises — the source part and target
part of the boundary had better be well-defined composites. For example the
following makes no sense in a 2-category:

• •

•

//

ZZ444444

DD





 �� .

In general, it is not just a question of orienting everything, but also a question
of checking that the chosen orientations give sources and targets that are well-
defined composites. This is what Street calls “well-formedness”.

The final complication arising from the non-invertibility of cells is about
which horns need fillers. Without getting into too many technicalities yet, a
horn is like a simplex with no interior, and one face missing. Here is a 2-
dimensional (unoriented) horn

• •

•

g

44
44

44
f









which may or may not have a 2-cell “filler” in it

• •

•

α

h

g

44
44

44
f









In a groupoid every such thing must have a filler. But if we give the 1-cells
orientations, we will need fillers in some cases but not others. For example, we
must have a filler

• •

•

//

g

��4
44

44
4

f

DD







for composition, but not necessarily a filler

• •

•

oo

g

ZZ444444
f

DD







unless f happens to be invertible. The nerve condition for ω-groupoids [22]
simply says “every horn has a unique filler”. But for ω-categories we need to
say

Certain horns of the right kind need to have fillers.

Working out which ones are the “right kind” is fiddly, and this is what is called
“admissibility”.
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6.1.4 Summary of the definition

In summary, there are three pieces of combinatorial magic involved:

1) Well-formedness: how we detect that pasting diagrams actually paste
properly

2) Orientation: using a system of orientations satisfying (1)

3) Admissibility: identifying the horns that need fillers according to the ori-
entations given in (2)

The definition then looks like this:

A strict ω-category is given by a simplicial set with some cells distinguished as
hollow, satisfying

i) all degenerate cells are hollow,

ii) if all but one face of a hollow cell is hollow, and if the horn formed by
those faces is admissible, then the last face must also be hollow, and

iii) every admissible horn has a unique hollow filler.

A weak ω-category is as above but with the word “unique” removed from con-
dition (iii).

Remarks on connection with the opetopic approach

The opetopic approach [4] was inspired/motivated by Street’s paper. Opetopes
can be seen as a way of avoiding the complicated combinatorics of orientation, by
restricting to shapes with only one cell in the target. Whereas simplices arise
without built-in orientation and so must have orientation imposed on them,
opetopes are constructed with orientations built in, and hence well-formedness
can also be built in; this can only happen since orientation already exists at the
time of construction.

Furthermore, the idea of hollowness is turned into an inherent property of
cells in an opetopic set: universality. Then the complication moves away from
the problem of finding the horns/niches that require fillers; instead we have
complicated conditions on which cells qualify as “structure-giving” fillers.

6.2 Motivation/Background

Rather than pluck the definition from thin air we aim to tell some of the story
that leads to it. We hope to shed some light on the combinatorics even though
we are unable to explain where the patterns really come from. We begin with
a discussion about simplicial sets.
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6.2.1 Geometric realisation and nerves of categories

Simplicial sets provide a useful means of studying topological spaces via an
adjunction

SSet Top⊥
//

oo .

When we draw pictures of simplicial sets such as

we are really drawing a topological space corresponding to it under geometric
realisation — we are realising a simplicial set as an actual geometric shape.

In order to do this, all we have to do is decide what each individual simplicial
object α ∈ ∆ should “look like”

0 •

1

2
22

22
22

22
22

22������������

3

VVVVVVVVVVV
							

DD
DD

DD
DD

DD
D













))
))

))
))

))
))

))

and then we can stick them together.
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Abstract categorical aside

Categorically what we have done above is define a functor

∆ −→ Top

and then used the Kan extension along the Yoneda embedding to induce the
adjunction

∆ [∆op,Set]

ω-Cat

//

��?
??

??
??

??
??

??

G

??
F

��

[m]

[m] ∆(−,[m])

∆m

� //

�

��?
??

??
??

??
??

??
��
??

Then G is given by GX([m]) = Top(∆m, X), the set of continuous maps from
the generic “geometric” m-simplex to the space X , and F is found by using the
facts that

• every presheaf is a colimit of representables,

• each representable ∆(−, [m]) must be sent to ∆m, and

• F is a left adjoint so must preserve colimits.

Copying this idea for categories

Whether we are thinking of the basic intuitive idea or the abstract categorical
argument, the point is to get a well-behaved adjunction

SSet Top⊥

F //

G
oo

enabling us to use simplicial sets to study spaces. We can use the same argument
with Cat instead of Top, to get an adjunction

SSet Cat⊥

F //

G
oo

enabling us to use simplicial sets to study categories. As above, we only need
to define a functor

∆ −→ Cat

giving the “free category on a simplex”. The free category on [m] is simply the
free category on m composable arrows

xo

f1 //x1
// · · ·

fm //xm .
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The right adjoint G above gives the simplicial set whose m-cells are all the
strings of m composable arrows in C. This is called the nerve of C, and G is the
nerve functor.

Categorically, the reason this adjunction is useful is that although G is for-
getful, it is not too forgetful: it is full and faithful. That is, a morphism in
Cat corresponds precisely to a morphism in SSet of the underlying nerves.
This means that we can construct a category Nerve ∼= Cat by taking the full
subcategory of SSet whose objects are precisely those in the image of G.

So the key question is: what is the image of G? That is:

Which simplicial sets arise as the nerve of a category?

This question has a complete answer — the “nerve condition” which, essentially,
ensures that every composable string of m arrows has a unique composite.

Copying this idea for ω-categories

The idea, then, is to replace Cat with ω-Cat in the following steps:

i) Construct a functor
∆ −→ ω-Cat

giving the “free ω-category on m composable arrows”.

ii) Use it to induce an adjunction

SSet ω-Cat⊥
//

G
oo

in which G should be full and faithful (which may be thought of as a
justification that the functor chosen in (i) was a sensible/useful one).

iii) Find the image of the nerve functor G, that is, find a “nerve condition”
with which to identify those simplicial sets that arise as the nerve of an
ω-category.

iv) Weaken the nerve condition to produce a definition of weak ω-category.

6.2.2 Definition of strict ω-category

Although we are not going to go into technical details that require a technical
definition of strict ω-category, we will discuss the technical approach briefly here
in order to justify our earlier comments about the definition being a “beam of
white light”. Street uses the following definitions of category, 2-category and
ω-category:

Definition A category is given by (A, s, t, ∗) where

• A is a set,



110 Chapter 6. Street

• s,t, A −→ A are functions satisfying ss = ts = s, tt = st = t, and

• ∗ : {(a, b) ∈ A×A | s(a) = t(b)} −→ A is a function satisfying s(a∗b) = sb,
t(a ∗ b) = ta,

with axioms for identities and associativity.

One striking feature of this is that there is no mention of objects except as
identity arrows. The definition of 2-category makes this even more striking, as
the underlying data is still only a set A (as compared with a more “diffracted”
definition which begins with sets A0, A1, A2 of 0-cells, 1-cells and 2-cells):

Definition A 2-category is given by (A, s0, t0, ∗0, s1, t1, ∗1) where (A, s0, t0, ∗0)
and (A, s1, t1, ∗1) are categories, satisfying some axioms (globularity, inter-
change and so on).

We can think of the following picture of a ∈ A

s0(a) t0(a)

s1(a)

%%

t1(a)

99
a
��

and we have horizontal and vertical composition given by ∗0, ∗1 respectively.
The identities for ∗1 are called 1-cells and identities for ∗0 are called 0-cells.
Finally, we use the definition of 2-category to make the following definition of
(strict) ω-category. The idea is that any pair of dimensions forms a 2-category.

Definition A strict ω-category is given by (A, (sn, tn, ∗n)n∈ω) where

• for each n, (A, sn, tn, ∗n) is a category, and

• for each m < n, (A, sm, tm, ∗m, sn, tn, ∗n) is a 2-category.

There are no further axioms — everything has been taken care of by the
axioms for a 2-category. Identities for ∗n are called n-cells.

Remarks

i) Since identities are to be thought of as degenerate cells we see why, in this
definition, “ordinary” (globular) n-cells will arise as degenerate cells —
because ordinary cells are defined precisely by the identities on them.

ii) Note that the above definition of ω-category includes the possibility of
elements of A that are not n-cells for any n ∈ N — these may be thought
of as “ω-cells”. This differs from the notion that many people now think
of as ω-category, which only has n-cells for finite n. Street restricts to this
case later in the paper.
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6.2.3 The functor ∆ −→ ω-Cat

In this section we will explain the key ideas behind the functor ∆ −→ ω-Cat.
This functor

∆ −→ ω -Cat

[m] 7→ θm

should give an ω-category θ with one m-cell in the “shape” of the m-simplex
together with whatever lower-dimensional cells are needed to support it. We
can illustrate the first few dimensions; we include orientations now but discuss
them later.

θ0 •

θ1
//

θ2

22
22

22
22

22
22������������

gives

• •

•

// ��
22

22
22

22
22FF����������

KS

θ3

VVVVVVVVVVV
							

DD
DD

DD
DD

DD
D













))
))

))
))

))
))

))

gives

• •

• •

//

VV-------

//HH�������

99sssssssssssss

KS

KS V

• •

• •

//

VV-------

//HH�������

eeKKKKKKKKKKKKK

KS

KS

θ4

VVVVVVVVV
						

DD
DDD

DDD









))

))
))

))
))

VVVVVVVVV
						

������������5
55

55
55

55
5

�������

!
!
!
!
!
!
!
!

gives
the shape of the

associativity pentagon zzzzzzz

222222

������

DD
DD

DD
D

A]

Note that we are now running out of dimensions on the page so we have
performed a useful “dimension shift” — in the pentagon, the edges are actually
representing 3-cells.

Aside on “dimension shift”

We could have performed a dimension shift for the tetrahedron as well, using
edges to represent 2-cells (i.e. cells of the previous dimension) which would yield
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a square

-------

�������

ssssssssssss

a
KS

b
KS f _*4

-------

�������

KKKKKKKKKKKK

c
KS

d
KS

• •

• •

a
//

d

��

c //

b

��
f

KS

Staying at this level of “shift”, θ4 would then appear as a cube, one of whose
faces is trivial, leaving five faces corresponding to the 5 edges of the usual
pentagon.

Performing another dimension shift for θ5, we get a hexagon; so each θ4 has
a (n + 1)-gon representing the (n + 1) faces of an n-simplex. However, staying
with the pentagons to build a 3-dimensional figure for θ5, we get the the usual
“4-cocycle condition” shape or 5-associahedron1 (see also [98]).

We include a net of this figure that can be cut out and assembled (Ap-
pendix B). We encourage the reader to do this as the geometry and symmetries
of the figure become much clearer than on a merely 2-dimensional piece of paper.

Notes on the 5-associahedron cut-out

The shapes A, B, C, D are dual to A′, B′, C ′, D′ respectively. The square E = E ′

is self dual. In [102] the orientation corresponds to

A, B, C, D −→ A′, B′, C ′, D′ .

Note that the dimension shift here means that each face is representing
a 4-dimensional shape, each edge a 3-dimensional shape and each vertex a
2-dimensional shape (pasting diagram). We have marked the 3-dimensional
“source edge” with a dotted line and the target with a thick line. The 2-

dimensional source vertex is marked
OO

""D
Duukkk and the target �� 55kkk bbDD.

It should be apparent from these diagrams that

• a free construction is needed at each dimension before the next dimension
can be added, as we need formal composites of cells to be sources and
targets of higher cells

• it is important that orientations are picked consistently so that the formal
composite is actually well-defined.

Once this is done, the nerve of an ω-category is constructed as the simplicial set
whose “m-cells are instances of m-cells between composites of (m − 1)-cells as

described by θm”. For example a 2-cell
h

g

44
44

4
f







KS

is to be a 2-cell h ⇒ gf in the

1The “5” here is because we’re considering the situation of composing 5 arrows.
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ω-category. A 3-cell

f5

f3

---------

f2

f1

���������

f4

sssssssssssssss

α3
KS

α1
KS _*4

f5

f3

---------

f2

f1

���������

f6

KKKKKKKKKKKKKKK

α0
KS

α2
KS

is a 3-cell which might be written linearly as (f3 ∗0 α3) ∗1 α1 V (α0 ∗0 f1) ∗2 α2.

6.2.4 Hollow cells and admissible horns

Recall that the data for an ω-category is to be a “simplicial set with hollowness”
that is, a simplicial set with some cells picked out and called hollow. Eventu-
ally these are supposed to be the structure-giving cells, so we need to decide
when these cells do actually give enough structure. The answer will be “every
admissible horn should have a hollow cell in it.”

The idea is that hollow cells should be like equalities or identities, literally

giving us compositional identities, e.g.
h

g

44
44

4
f







KS

being hollow tells us gf = h, and

f5

f3

---------

f2

f1

���������

f4

sssssssssssssss

α3
KS

α1
KS _*4

f5

f3

---------

f2

f1

���������

f6

KKKKKKKKKKKKKKK

α0
KS

α2
KS

being hollow tells us that

(f3 ∗0 α3) ∗1 α1 = (α0 ∗0 f1) ∗2 α2. (6.1)

A horn for an m-cell gives us all the lower-dimensional data except for one
(m− 1)-dimensional face. The question is:

When does this partial data uniquely determine the missing cell?

This question says

When should this horn have a unique hollow m-cell in it?

The hollow m-cell will tell us how to “solve the equation”. For example,

given
?

g

44
44

4
f






 ?
KS

we know we must have a hollow cell telling us gf = h. However,

if instead g is missing then the equation does not allow us to determine g unless

f is already an identity (or invertible). This says that the horn
h

?
44

44
4

f





 ?
KS

only

requires a hollow filler if f is already hollow.
Similarly we can consider the 3-cell equation (6.1) above:
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• To determine α0, we need α2 and f1 to be identities.

• To determine α1, we need α3 to be an identity.

• To determine α2, we need α4 to be an identity.

• To determine α3, we need α1 and f3 to be identities.

The question is: what is the general pattern here?
The key then is to express all these horns and faces in such a way that

pattern-spotting is made easier. This is where all the combinatorics come in;
everything is expressed as a string of indices, and then it is a matter of spotting
patterns in the numbers. Street’s conjecture in [102] is that the pattern he has
spotted holds true at all dimensions.

6.2.5 Where do globular cells come from?

Here are some examples of how globular cells arise as partly degenerate simplicial
cells:

2 dimensions

g

1

44
44

44
44

4

f












KS
≡ • •

f

��

g

CC
KS

3 dimensions

g

1

---------

1

f

���������

f

sssssssssssssss

1
KS

α1
KS V

g

1

---------

1

f

���������

1

KKKKKKKKKKKKKKK

1
KS

α2
KS ≡ • •

f

��

g

CC

�$

α1

z�

α2_ *4

6.3 The actual definition

We now briefly go through the technicalities of the definition with notation as
in [69].

6.3.1 Simplicial sets

A simplicial set is a functor

A : ∆op −→ Set.

The category ∆ has objects [m] = {0, . . . , m} for m ≥ 0, together with order-
preserving maps. So we can think of the underlying simplicial shapes as having
vertices labelled by the indices {0, . . . , m} as in the following examples:
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m = 0
0
•

m = 1 0 1

m = 2

0 2

1

22
22

22
22

22
22������������

m = 3

1

0

3

2

VVVVVVVVVVV
							

DD
DD

DD
DD

DD
D













))
))

))
))

))
))

))

m = 4

0

3

2

1

VVVVVVVVVV
							

DD
DD

DD
DD

DD











))

))
))

))
))

))
)

4

VVVVVVVVVV
							

���������������5
55

55
55

55
55

55

��������

!
!
!
!
!
!
!
!
!
!

Note that the 2-simplex has 3 constituent 1-simplices (faces). The 3-simplex
(tetrahedron) has 4 constituent 2-simplices (triangles). The 4-simplex, thought
of as a 4-dimensional figure, has 5 constituent tetrahedra — one at the top, one
at the bottom, and three that “rotate” about the central dotted axis.

An m simplex has (m + 1) faces, its constituent (m − 1)-simplices, and
each one can be located by omitting one vertex of the m-simplex. Thus we
say “ith face” for the face found by omitting the ith vertex. For example, the
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(1-dimensional) faces of a 2-simplex are named as follows:

0 2

1

1

0
22

22
22

2
������

This notation is what enables the pattern-spotting in the end.
For orientation, Street uses the convention that the odd faces are in the

source of a cell and the even ones in the target.

6.3.2 Maps in ∆

Faces

We’re interested in maps

δ0, ..., δm : [m− 1] −→ [m]

where δi simply misses out i in the codomain. Then in the actual simplicial set
A the map

A(δi) : A[m] −→ A[m− 1]

picks out the ith face of an m-cell, by missing out the ith vertex as discussed
above.

Degeneracies

Where faces are given by injections, degeneracies are given by surjections. Given
m′ ≤ m, an order-preserving map

σ : [m] −→ [m− 1]

can be thought of as identifying some points of [m]. For example the following
map

0

1

2

0

1

--ZZZZZZZZZZ

--ZZZZZZZZZZ
11dddddddddd

[2] [1]//σ :

identifies 1 and 2. Geometrically this can be though of as “squashing” a triangle
down to a line

0 1

2

.
.

.������ _�� 7→ 0 {1, 2}
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In the simplicial set A, the map

Aσ : A[m− 1] −→ A[m]

picks out, for every (m−1)-cell, an m-cell that is the higher-dimensional version
of the (m − 1)-cell obtained by inserting some degenerate faces. So for every
0-cell a we get a degenerate 1-cell

a
a′

//___ a

where a = (Aσ)a′.

For every 1-cell a
f // b we get degenerate 2-cells

a b

b

2
2

2
f

������
a b

a

f

22
22

22�
�

�
�

and for every 2-cell

a c

b

h

g

22
22

22
f

������

we get degenerate 3-cells

a c

bb

h

g′

�������

____

f

�������� gf ′

uuuuuuuuuuuuuu

where we have inserted 2 degenerate triangles at the sides. We get even more
degenerate tetrahedra from surjections

[3] −→ [1]

a b

bb

f ′′

�
�
�
�

____

f

��������

=
=

=
=

=
f ′

uuuuuuuuuuuuuu

6.3.3 Horns and fillers

A horn is, essentially, an m-cell with no interior, and one face missing. In fact
it is a whole simplicial set of lower-dimensional cells constituting this figure.
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We write Λk
m for the horn which is an “m-cell with its kth face missing”. For

example, Λ0
2 looks like

0 2

1

?

22
22

22
22

2���������
?

A horn in a simplicial set A is given by a morphism Λk
n −→ A (techni-

cally a natural transformation, since a simplicial set is technically a functor).
Geometrically, this picks out the horn-shaped possibilities in A, e.g.

a c

b

h

?

22
22

22
22

2

f

���������
?

A filler for a horn Λk
ma is an m-cell that “fills in” the missing parts of the

horn. For the above horn we might have the following filler:

a c

b

h

g

22
22

22
22

2

f

���������
α

6.3.4 Hollowness

A simplicial set with hollowness is a simplicial set A together with a subset of
“hollow m-cells” Hm ⊆ A[m] for each m ≥ 1. In particular there are no hollow
0-cells. Note that there are no conditions at this point on which cells may or
may not be hollow.

6.3.5 Orientation and admissible horns

This is where all the combinatorics comes in. We choose not to go into the
details of exactly how to calculate which horns are admissible. The key is to
think of a cell as a morphism oriented as follows

odd-numbered faces even-numbered faces//

and then ask the question as discussed in Section 6.2.4:

Question: Given a missing cell, which of the other cells must be identities in
order to determine it uniquely?
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The combinatorial answer is found by examining the set of vertices of each
face and testing to see if this set is “k-alternating”.

Answer: Any face that is k-alternating must be an identity. So a horn is
admissible if every k-alternating face is hollow.

Definition A weak ω-category is a simplicial set with hollowness such that

i) all degenerate cells are hollow,

ii) every admissible horn has a hollow filler, and

iii) if all but one face of a hollow cell is hollow, and if the horn formed by
those faces is admissible, then all the faces must be hollow.
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Chapter 7

Joyal

Introduction

Joyal’s definition is given in an unpublished but well-known note [50]. It can
be thought of as another generalisation of the nerve condition, though this may
not be immediately apparent from the way the construction is actually effected.
The definition ends up looking like this:

An ω-category is a cellular set in which every inner horn has a filler.

Comparison with Street

We might compare this with Street’s definition:

An ω-category is a simplicial set in which every admissible horn has
a hollow filler.

A simplicial set is a functor

∆op −→ Set

but a cellular set is a functor

Θop −→ Set

where Θ is a category of certain shapes that are to play the role that simplices
play for ordinary categories.

Street’s scheme for generalisation is to use degenerate simplices for higher-
dimensional cells, but Joyal introduces more shapes to deal with the higher-
dimensional cells. This could be seen as a way of avoiding the complicated
combinatorics of “admissible” horns — although Joyal’s definition is also some-
what combinatorial, the condition for being an “inner horn” is rather easier to
check than that for an “admissible horn”. As usual, however, the complications
have not vanished into thin air; they have been absorbed into the definition of
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the underlying category Θ and the definition of horn that goes with it. How-
ever, once we understand how to translate everything into “tree notation”, the
combinatorics of trees deals with all this quite neatly.

Comparison with Simpson/Tamsamani

Recall that Simpson/Tamsamani also introduce “more shapes” to deal with
higher dimensions. However, their underlying category ∆n is simpler to define
(if not to draw); the difference is essentially that in ∆n we are considering only
pasting diagrams of “even depth” e.g.

•• // ��EE
��

��
• •

��
EE//

��

��
• •//

��
EE

��

��
not • •

��
AA
��
II KK��

��

��
��

• •//
��
EE

��
��

• •
��
EE��

In the Simpson/Tamsamani approach the latter must be obtained by means
of degeneracies; for Joyal’s definition we construct the latter kind of pasting
diagram directly, right from the start.

7.1 Intuitions

The underlying data for this definition is to be a cellular set, that is a functor

Θop −→ Set.

As with other definitions, this presheaf is to be interpreted as giving sets of cells
with underlying shape in Θ. So we might ask what these shapes “look like”.

The objects of Θ are in fact globular pasting diagrams, but this does not
capture the whole story — further important information is given by the mor-
phisms of Θ. At 1-dimension, this situation coincides with ∆, so it is helpful
to consider ∆ for a moment. As usual, it helps to think about this “base case”
in a particular way in order to see in what sense the generalisation is a natural
one.

7.1.1 The category ∆

The objects of ∆ are sets {0, 1, ..., n}. We can think of these as n-strings of
(formal) arrows

• //• //• // · · · //•

but when we think of simplicial sets we usually draw a 2-simplex as

44
44

4






not just
• // • // • .
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This is because the face maps in ∆ give us three 1-cell faces, not just two.

Now, to see how the generalisation to Θ arises naturally, we can think of the
n-string of n arrows

• • • · · · •// // //

as a 1-pasting diagram. To generalise to higher dimensions, we

i) use globular pasting diagrams of all dimensions (not just the 1-dimensional
ones) as objects, and

ii) consider that in order to draw more comprehensive pictures of the shapes
for the presheaf, we should somehow “simplicialise” the globular pasting
diagrams, to portray information about all the faces as well.

7.1.2 Faces

Recall that in ∆ faces are given by injections. e.g. for [2] −→ [3] we have three
injections

•

•

•

•

•

55

55

•

•

•

•

•

))

))

•

•

•

•

•

55

))

If we think of [n] as an n-string of arrows (here drawn vertically), this looks like

•

•

•

•

•

55

55
��

��

��

•

•

•

•

•

))

))

��

��

��

•

•

•

•

•

��

��

��

55

))

corresponding to

i) an instance of
•

��
•

in

•

��
•

��
•

, or

ii) a way of composing

•

��
•

��
•

to get
•

��
•

.



124 Chapter 7. Joyal

So we might draw the resulting simplicial shape as

• •

•

// ��
44

44
44

44DD









showing the three “faces”, rather than just the 1-pasting diagram

• //• //•

which only shows two. This is what we mean by “simplicialising” the pasting
diagram. Similarly

• //• //• //• becomes
•

•

•

•

++VVVVVV
DD			

!!D
DD

DD
DEE







��)

))
))

))
))

22 .

Of course, higher-dimensional pasting diagrams become rather hard to draw in
“simplicialised” form; this is where the useful combinatorics of Joyal/Batanin
trees come in (see Section 7.1.4).

Finally, recall that all the injections in ∆ can be generated by those of the
form

[i] −→ [i + 1]

omitting one index. In terms of the strings of arrows, this corresponds to “com-
posing” only two arrows at a time, i.e. a biased composition. The same can be
done at higher dimensions. So we will be interested in faces φ of θ corresponding
to

i) an instance of φ in θ (as a “sub-pasting-diagram”) or

ii) a way of composing two constituent arrows of θ to get φ

For example, given

φ = • •
��
EE�� • •

��
EE�� θ = • •

��
EE�� • •//

��
EE

��

��

we have three ways of getting φ as a face of θ:

i) • •
��
EE�� • •//

����

ii) • •
��
EE�� • •// EE

��
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iii) • •
��
EE�� • •___ ��

EE��

In order to ensure that we have found a complete set of generators for the
face maps, we introduce a notion of volume of a pasting diagram. Then the
generators are given by faces φ of θ where

Vol(φ) = Vol(θ)− 1.

This is analogous to the use in ∆ of injections

[i] −→ [i + 1]

to generate face maps. Indeed, in the case of 1-pasting diagrams the two notions
coincide.

Another way to think about faces is to consider the diagram giving the nerve
construction

Θ [Θop,Set]

Str-ω-Cat

//

��?
??

??
??

??
??

?? ??

��

��
??

Since we want the map on the left to be full and faithful, we have a way of
working out what the maps in Θ should be: we can generate strict ω-categories
from the pasting diagrams in question and looking for ω-functors between them.
In the previous example (with some added notation)

•x0 •x1

f1

��

g1

EEα
��

• x2

g2

YY

f2

��
β
��

•y0 •y1

a1

��

c1

EEγ
��

• • y2
b //

a2

��

c2

EE
δ1��

δ2��

should give ω-categories with
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0-cells x0, x1, x2 y0, y1, y2

1-cells f1, f2, f2 ◦ f1 a1, a2, a2 ◦ a1

g1, g2, g2 ◦ g1 b, b ◦ a1, b ◦ c1

and identities c1, c2, c2 ◦ c1

and identities

2-cells α, β, β ◦ α γ, δ1, δ2

and identities δ2 ◦ δ1, δ1 ∗ γ, δ2 ∗ γ, (δ2 ◦ δ1) ∗ γ

and identities

We see that the 3 faces given earlier came from the following three possible
assignations:

i) α 7→ γ

β 7→ δ1

ii) α 7→ γ

β 7→ δ2

iii) α 7→ γ

β 7→ δ2 ◦ δ1

the rest of the ω-functor action being determined by functoriality.

Note on disks

Note that, technically, Θ will be defined by its opposite, Θop = D, a category
of “finite disks”. This is because the morphisms arise more naturally in this
direction when we use the combinatorics of trees.

7.1.3 Inner faces and inner horns

As for simplices, a horn is to be a “cell with no interior and one face missing”.
As in Street’s definition, we will only require certain horns to have fillers: the
“inner” horns. A filling condition can be thought of in terms of the following
question:

Given all faces of a cell except one, when should we be able to deter-
mine the last face?
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The point is that some faces represent composition and some do not; only those
representing composition should necessarily be determinable from the other
faces.

Recall we observed in the previous section that a face φ of θ arises as

i) an instance of φ in θ as a sub-pasting-diagram, or

ii) a way of composing two constituent arrows of θ to get θ.

Only faces of type (ii) should be determinable from the other faces (by perform-
ing an appropriate composition), so only type (ii) will be called an “inner” face.
A horn will be called “inner” if its missing face is an inner face; this is the kind
of horn that needs a filler.

7.1.4 Trees

Trees are a useful combinatorial tool for handling higher-dimensional
pasting diagrams that are too difficult to draw in a globular way.

Recall that a multisimplicial object can be specified quite simply by a string of
“coordinates”

(i1, i2, i3, ..., ik)

which is to be interpreted as a k-pasting diagram with

i1 1-cells pasted end to end

i2 2-cells pasted end to end in each 1-cell position

i3 3-cells end to end in each 2-cell position
...

ik k-cells end to end in each (k − 1)-cell position.

The situation is simplified by considering only “even depth” pasting diagrams
as illustrated on page 122. Now, to allow for non-even depth diagrams as well,
we need many more coordinates, giving:

i1 1-cells pasted end to end

i21, ..., i2i1 telling us how many 2-cells are pasted in each 1-cell position,
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and then a number of 3-cells to be pasted at each 2-cell, and so on. This is more
easily represented as a tree:

•

• • • •

• • • • • • • ••

• • • • • • • • •

MMMMMMMMMMM

222222

������

qqqqqqqqqqq

))))))

������

))))))

������

))))))

������

222222

������

))))))

������

))))))

������

))))))

))))))

������

�lr

�lr

�lr

·
·
·

·
·
·

·
·
·

number of 3-cells pasted at each 2-cell

number of 2-cells pasted at each 1-cell

number of 1-cells in a row

Here is an example of a tree and its corresponding diagram:

•

• • • •

• • • • • ••• ••

MMMMMMMMMMM

222222

������

qqqqqqqqqqq

//////

������

))))))

������

$$$$$

�����

222222

������
• •

��
EE
��
JJ//

��

��

��

��

••
��
EE//

��

��
• •// • •

��
EE JJ//

��

��

��

In fact, for Joyal’s category D we introduce yet more combinatorics to help us
easily establish which faces are “inner”.

7.2 Technicalities

The combinatorics of globular pasting diagrams are made significantly easier
(as compared with other shapes) by the fact that formal composites of k-cells
along (k − 1)-cell boundaries have a natural linear order on their constituents:

•• • • •
2 // 3 // 4 //1 // or • •

��
EE
��
JJ//

3��

2��

1��

4��

etc.

These can then be built up into more complicated diagrams such as

• •
��
EE
��
JJ//

��

��

��

��

••
��
EE//

��

��
• •// • •

��
EE JJ//

��

��

��

This is done using a notion of “finite disk” which takes the form of a diagram
of sets

Dk · · · D3
pk //
uk

__

vk

__
D2

p3 //
u3

\\

v3

\\
D1

p2 //
u2

\\

v2

\\
D0

p1 //
u1

\\

v1

\\
= 1 .
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We can think of each Dm as giving the “set of m-cell positions” in the pasting
diagram; for instance in the above example there are four 1-cell “positions”.
Each pm then tells us in which (m−1)-cell position each m-cell lives. Continuing
with the above example we have:

i) four 2-cells in the first 1-cell position

ii) two 2-cells in the second 1-cell position

iii) no 2-cells in the third 1-cell position

iv) three 2-cells in the fourth 1-cell position

However, we need more than this in order to deal with maps later: um and
vm give us formal “extremities” for each string of composites, as if telling us
where the beginning and the end of each one is. We can think of it as

• •//___ ��
EE
��
JJ
��
LL//

��

��

��

��

��

��

• •
��
EE
��
JJ//

��

��

��

��

••
��
EE//

��

��
• •

��
EE
��
JJ
��
LL//

��

��

��

��

��

��

//___

where dotted arrows give us the extremities at each dimension. In fact these are
“finite disks”; to see why they are in any way disk-like it is helpful to consider
an infinite disk example using the usual Euclidean balls.

We are not going to give a complete account of the technical details.

7.2.1 Euclidean balls as disks

To shed some light on the definition of disks, we consider the motivating example
of Euclidean balls. In this case we have

D0 = •

D1 = (unit interval)

D2 = (unit disk)

D3 = (unit sphere)
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We examine the part of the diagram involving D1 and D2

D2 D1
p2 //
u2

``

v2

``
.

The map p1 squashes the unit disk down to the unit interval as shown below:

•
d

p
−1
2 (d)

p2

��

We observe that the pre-image of any point d has a total order on it; this
will eventually give the total order for the string of composable cells in the “d
position”.

Now, u2 and v2 embed the interval into the disk “at the extremities”

• ••
d

•

•

p
−1
2 (d)− −

v2(d)

u2(d)

v2

vv

u2

hh

We can formalise this using the total order on each fibre p−1
2 (d) — we assert

that u2(d) must be the least and v2(d) the greatest element on this fibre. (This
is the first condition given in [69].)

Finally, we observe that u2 and v2 coincide only at the extremities of the
interval, and these extremities are picked out by u0 and v0.

• •

Im u0 Im v0

: 8Bzzzzz

�\f DDDDD

This gives the second condition listed in [69]:

um(d) = vm(d) ⇐⇒ d ∈ Im(um−1) or Im(vm−1)

This is to ensure, eventually, that the source and target of a cell are always kept
formally distinguishable.
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7.2.2 Finite disks

Specifying the interior and volume of a disk is important because eventually we
will have a special interest in maps which

• preserve the interior, and

• change the volume by only 1.

Finiteness refers to the “volume” of a disk; for us the volume will correspond to
the total number of m-cell positions in the pasting diagram summed over all m,
and this should of course be finite. Dimension will coincide with the dimension
of a globular pasting diagram.

We have the following definitions:

i) The interior ιDm is defined to be all of Dm except the “extremities”, i.e.

ιDm = Dm \ {Im(um) ∪ Im(vm)}

ii) A disk D is said to be finite if

∐

m>0

ιDm

is finite, i.e.

(a) each interior is finite, and

(b) there is only a finite number of non-empty interiors.

NB The “exterior” at each dimension is Im(um)∪ Im(vm) so its finiteness
follows automatically.

iii) The volume of a finite disk is defined to be

∣
∣
∣
∣
∣

∐

m>0

ιDm

∣
∣
∣
∣
∣

i.e. the total number of elements in all dimensions of interior. (This makes
more intuitive sense in tree notation as we will see in Section 7.2.4).

iv) The dimension of a disk is the largest m such that Dm has a non-empty
interior. So it is the highest dimension where there is an actual cell.
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7.2.3 Finite disks and globular pasting diagrams

We will now see how a finite disk corresponds to a globular pasting diagram.
An example of a finite disk is:

•• ••◦ ◦

◦ ◦

◦

◦

•
•

•

•

◦

◦

◦

◦

•
•

•

•

•
•

◦

◦

_

OO

_

OO

_

OO

_

OO

_

OO

_

OO

D2

D1

D0 •

p2

The line shows the unit interval; the dots • are the elements we are including
in ιD1 (a finite number of them); the dots ◦ show the extremities.

Now, in D1 each • represents a 1-cell. In D2 each vertical column of •
represents a vertical string of 2-cells, so we have the diagram as before

• •
��
BB
��
JJ LL��

��

��
��

• •//
��
DD
��
KK

��
��
��

��

• •//
��
DD

��
��

• •//

Note that the important information is how many elements are in each fibre
— it doesn’t matter how spread out they are, for example. So in fact we take
isomorphism classes of finite disks.

NB A morphism of finite disks preserves everything including, crucially, the
ordering on each fibre. So isomorphism classes do give us precisely the informa-
tion we want:

Finite disks are isomorphic if and only if they have the same number
of elements in each fibre.

We write D for the skeleton of the category of finite disks (i.e. we pick one
representative of each isomorphism class). Eventually we will be using Θ = D

op.
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7.2.4 Trees

Since the important information is how many elements are in each fibre, we can
represent an element of D as a tree, where the number of edges above a node
gives the number of elements in that fibre. e.g. for the above example

•

• • • •

• • • • • • • • •

JJJJJJJJJJ

))))))

������

tttttttttt

222222

))))))

������

$$$$$

������

))))))

������

�lr

�lr

�lr

ιD2

ιD1

ιD0

We can also include the extremities in the tree:

•

◦ • • • • ◦

◦ • • • • ◦ ••◦ ◦ ◦ ◦ ◦• • • ◦

PPPPPPPPPPPPP

JJJJJJJJJJ

))))))

������

tttttttttt

nnnnnnnnnnnnn

222222

))))))

������

<<<<<<<

������

"""""

�����

))))))

������

������

))))))

������

//////

������

�lr

�lr

�lr

D2

D1

D0

Note that we can now find the volume by simply counting the black dots •
(ignoring the bottom one).

7.2.5 Faces and horns

Faces

Recall that in simplicial sets:

• faces come from injections in ∆, and

• degeneracies come from surjections in ∆.

For a cellular set
Θop −→ Set

a technical duality arises since everything is easier to construct in D = Θop. So
faces will come from surjections in D, and we might refer to these as “cofaces”
(but in practice we mostly won’t bother).

Surjections in D can be seen quite clearly in tree notation whereas in past-
ing diagram notation the duality can promote confusion. A tree map can be
constructed from the ground up:

• the bottom node must map to the bottom node

• at the D1 level each node must map to a node at the same level, order
must be preserved, and exteriors must be preserved

• at the D2 level, nodes in each fibre must map to the corresponding fibre,
with order preserved, and exteriors of each fibre must be preserved
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— and so on
Note that interiors do not necessarily have to be preserved; if they are, the map
is called inner.

We can generate all surjections from those that reduce the volume by 1. For
example,

•

◦ • • ◦

◦ •• ◦ ◦ ◦

DDDDDDDD

222222

������

zzzzzzzz

"""""

�����

,,,,,,

������

%%%%%

�����

Vol = 4

//

•

◦ • ◦

◦ •• ◦

555555

						

"""""

�����

,,,,,,

������

Vol = 3

corresponding to the surjection

• •
��
EE//

��

��
•• // � ,2 • •

��
EE//

��

��

In general this can happen in precisely two ways:

i) interior is not preserved: an interior node • is identified with an exterior
node ◦

ii) interior is preserved: precisely two interior nodes • are identified (as in
the case above).

Case (i) corresponds to a pasting diagram embedding in another as a “sub-
pasting-diagram”; case (ii) corresponds to some “composition” occurring in the
pasting diagram. If we use labels in the example above we have

• •
��
EE//

α��

β��
••

f // � ,2 • •
��
EE//

f∗α��

f∗β��

We encourage the reader to experiment with some trees and their corresponding
pasting diagrams to get a feel for this correspondence.

Inner faces

An inner face is one arising as case (ii) above, i.e. the interior is preserved and
some composition has occurred. An example of a non-inner face of the above
pasting diagram is:

•

◦ • • ◦

◦ •
α

•
β

◦ ◦ ◦

DDDDDDDD

222222

������

zzzzzzzz

))))))

222222

������

))))))

������

Vol = 4

F //

•

◦ • • ◦

◦
Fα

•
Fβ

◦ ◦ ◦

DDDDDDDD

222222

������

zzzzzzzz

//////

������

))))))

������

Vol = 3
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corresponding to the globular diagram

• •
��
EE//

β��

α��
••

f // // • •EE//
Fβ��

••
f //

Horns and fillers

Finally a (co)horn is a collection of “all (co)faces except one” for a given pasting
diagram. For the above diagram we have

• •
��//

α��
••

f // , • •EE//
β��

••
f // , • •

��
EEβ◦α�� ••

f // , • •BB
��//

f∗β��

f∗α��

of which only the last two are inner.

A filler for a horn in a cellular set Θop −→ Set is analogous to a filler in a
simplicial set — a cell whose faces match those given by the horn in question.
An inner (co)horn is one whose missing (co)face is inner. Thus, the notion of
an inner horn is a way to determine which maps correspond to composition.
This is analogous to Street’s admissibility condition.

7.2.6 The definition

We have the following definition:

An ω-category is a cellular set

Θop X // Set

in which every inner horn has a filler.

Recall that the maps described in the previous section were those of D = Θop

(the directions here can get confusing). So for example a map in D

• •
��
EE//

��

��
•• // // • •EE//

��
•• //

gives us a map in a cellular set X

X

(

• •
��
DD//��

��
•• //
)

// X

(

• •DD//��
•• //
)
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For this example we also have maps

X



 • •
��
DD//

��
��

•• //




X



 • •
��//��

•• //




X

(

• •DD//
��

•• //
)

X



 • •
��
DD�� •• //





X



 • •
##
;;//

��
��





X



 • •
��//��




X

(

• •DD//
��

)

X



 • •
��
DD��





::tttttttttttttttttttt 33fffffffff

++XXXXXXXXX

$$J
JJJJJJJJJJJJJJJJJJJ

//

//

++WWWWWWWW

33gggggggg

Note that the bottom part of this diagram really does commute (check the
trees if you are in doubt). This might make it look as though this situation is
more strict than it ought to be — after all, this looks like the interchange law
at work. However, this is another case of a non-algebraic definition in which the
issue of constraints disappears (see Introduction).

In summary, for any pasting diagram α, X(α) can be thought of as a set of
“coherent systems for composing up the diagram”, witnessed by the diagram of
morphisms with X(α) as domain.
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Trimble and May

Introduction

The definitions of Trimble [108] and May [81] take the “enrichment” point of
view explicitly. Trimble’s is almost disarmingly straightforward but relies heav-
ily on the structure of topological spaces; May’s can be thought of as a gener-
alisation to a more abstract setting.

The two main components of this approach are

i) enrichment, for building up dimensions, and

ii) parametrised weakening of coherence for composition, using an operad.

Trimble’s idea is: rather than try to understand “weak associativity” ab-
stractly, we directly use the weakly associative composition of paths in topolog-
ical spaces to parametrise composition in an n-category. To do this, he uses a
certain naturally arising operad in topological spaces.

It may seem that this definition is immediately less general than the others.
However, its use of a certain operad to parametrise composition does leave
open the possibility of using other operads to get other, related, theories of n-
categories with different notions of “weak composition”. May’s definition can
be thought of as this very generalisation. The important question is then:

Which operads in which categories should qualify as sensible candi-
dates for defining an n-category?

Trimble’s chosen operad E is certainly “contractible” (in the sense that each
space E(k) defining it is contractible). This means that we don’t get any really
unruly situations arising; but it also leaves enough room for manoeuvre.

May’s idea is to replace Top by a category B, and get an abstract notion of
“contractible operad” in B analogous to the notion in Top. Then the remaining
question is:
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What structure does B need to have in order to be able to do this in
a meaningful way?

We will demand:

i) enough structure to define an operad in B in the first place,

ii) a Quillen model category structure in order to have a suitable notion of
“homotopy”, and

iii) enough further structure to make the induction go through.

We will discuss this in Section 8.2.5 without going into full technical details
of what we need and why.

8.1 Trimble

We begin by presenting Trimble’s original definition before thinking about how
it might generalise.

8.1.1 The idea

The definition is inductive and looks somewhat like the definition of an enriched
category (see Section 8.1.2):

• a 0-category is a set

• an n-category A consists of

i) objects: a set A0

ii) hom-(n− 1)-categories: for all a, a′ ∈ A0 an (n− 1)-category A(a, a′)

iii) k-ary composition: for all k ≥ 0 and a0, . . . , ak ∈ A0 an (n − 1)-
functor

Πn−1(E(k)) ×A(a0, a1)× · · · ×A(ak−1, ak) −→ A(a0, ak)

satisfying some axioms.

Question: What is going on with Πn−1(E(k))?

Answer: The idea is that it is our way of parametrising the precise nature of
the weakness of composition. It is like the “generic” (n− 1)-category for weak
k-ary composition in this theory.

The resulting n-category will have one k-ary composite for each object in
Πn−1(E(k)). The various k-ary composites will be related by higher-dimensional
cells one dimension up, controlled by higher-dimensional cells in Πn−1(E(k)) and
so on.

Finally, what axioms do we demand? In fact E is an operad, and the axioms
say:
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The composition functions must behave properly with respect to the
operad composition.

Coherence then really comes from the coherence of Πn−1(E(k)), not from the
actual axioms themselves; the axioms ensure that this coherence can indeed be
carried over.

Strictness

Note that if we replace E by the terminal operad 1 (which has 1(k) = 1 for
all k) we would get a strict n-category, as we would end up with precisely one
k-ary composite for each k. Note that there will be an equivalence between the
operads E and 1 of the form

∀k E(k) ' 1(k) = 1.

That is, each space E(k) will be contractible. This characterisation of E will be
a crucial ingredient in the generalisation to May’s definition; see Section 8.2.3.

8.1.2 Enrichment

The usual definition of enrichment looks like this:

Let V be a monoidal category. A V-enriched category A consists of

i) objects: a set A0

ii) hom-objects: for all a, a′ ∈ A0 an object A(a, a′) ∈ V

iii) binary composition: for all a0, a1, a2 ∈ A0 a morphism in V

A(a0, a1)⊗A(a1, a2) −→ A(a0, a2)

iv) identities: for all a ∈ A0 a morphism in V

I −→ A(a, a)

satisfying strict associativity and unit laws.

This gives a perfectly good way of defining strict n-categories inductively,
by putting V = (n− 1)-Cat. However, if we want weak n-categories we will
have to do something about the strictness in the above definition.

Perhaps the most obvious way to do this is to relax the axioms to make
everything weak. However, this is going to be hard (if not technically impossible)
to do in a general setting since a fully weakened notion of enrichment would use
all n available dimensions — so we will need to know more about V than just
a monoidal structure. Specifically, we will need to know more and more about
the enrichment category V as we increase dimensions, so it will be hard to make
a general definition of “weak enrichment” that will cover our needs.
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Instead, a different approach is to weaken the notion of “composition” so
that the whole notion of associativity more or less vanishes. This is Trimble’s
approach. Composition will be parametrised by the generic “weak associativity
structures” Πn−1(E(k)). Instead of having unique composition, we have one
k-ary composite for every object of Πn−1(E(k)). The higher-dimensional cells
of Πn−1(E(k)) will take care of the coherence. So, what is the operad E?

8.1.3 Paths and the operad E

E is a topological operad: so we have for each k ≥ 0 a space E(k) together with
composition and identities. Each E(k) can be though of as a space of k-ary
operations.

The idea here is to make use of one of our leading examples of weakly
associative composition: composition of paths in a space. A path in a space
X is continuous map

p : [0, 1] −→ X

and is thought of as going from p(0) to p(1)

0 1
� �t � p // • •

•
p(t)

p(0)

p(1)

X

Paths p and p′ can be composed (if p(1) = p′(0)) but not canonically — the
natural way of “sticking paths together” will give us a map

[0, 2] −→ X

0 2
� �1 � // •

•

p(1)=p′(0)

p(0)

p′(1)

X

•

and we will need to turn this into a map

[0, 1] −→ X.
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We can do this by composing the above canonical “composite path” map [0, 2] −→ X
with a continuous map

f : [0, 1] −→ [0, 2]

such that f(0) = 0 and f(1) = 2. However, there are rather a lot of those to
choose from. We can go ahead and choose one, but in doing so we unleash all
the associativity problems.

Choosing a map f as above is a bit like deciding “how fast” we are going to
go along p and then p′ (though actually it is more than that). This “scaling”
can be drawn as

0 2
� �

0 1
� �

..
.
.
.
.
.
.......

.
.
.
.
...

.....
.
.
.
.
.
.
.
.
.
.
.
.

.....
.
.
.
.
.
.
.
.
.
.....

.....
.
.
.
.
.
.
.
.
.
.
.
.

..
.
.
.
.
.
.
.
.
.
.
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1

where the sides show that the endpoints are identified.
If we then wanted to compose with a third path we would get something like

0 2
� �

0 1
� �

0 3
� �

0
� �

1 2
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. ...

.

.

.
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.
.
.
.
.
.
.
.

identity

or on the other side

0 2
� �

0 1
� �

0 3
� �

0
� �

1 2
...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
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.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

identity

and we see non-associativity emerging. However, we have a whole space of maps

[0, 1] −→ [0, 3]
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in which there will be a path mediating between the above two maps. This is
the idea of the operad E. For each k ≥ 0, E(k) is defined to be the space of
maps

[0, 1] −→ [0, k].

For composition, we need to map

E(i1)× · · · ×E(ik)×E(k) −→ E(i1 + · · ·+ ik)

and this will be by “substitution” as in the following diagram

oo i1 // oo i2 // oo i3 // oo i4 // · · ·� �� �� �� � �

�� �� �� � · · ·
0 k

� �
0 1
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NB If we actually identify the endpoints we get something like

• •

•
1

•
2

•
3

•
4

0

which looks a bit like an opetope.

8.1.4 Action on path spaces

We can now use the operad E to keep a handle on our hitherto messy notion of
path composition. Recall we said we could compose two paths x0 x1 and
x1 x2 in X by using a “scaling” map

f : [0, 1] −→ [0, 2]

to record exactly how we scaled our double-length path back down to a unit-
length path. This is just an element of E(2) so we can express this as an action

E(2)×X(x0, x1)×X(x0, x2) −→ X(x0, x2).
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In general we can glue k paths together and scale them down again by using
the map

E(k)×X(x0, x1)× · · · ×X(xk−1, xk) −→ X(x0, xk),

giving one way of scaling for each object of E(k). Note that each X(a, b) is the
space of paths from a to b and each of the above “actions” is a map of spaces,
so we also have higher homotopies mediating coherently at all levels.

Finally, this is an operad action which means that the path composition
interacts sensibly with operad composition, in the following sense. If we take
a long string of paths we could glue them together (and scale) in two steps,
glueing some sub-strings first, and then glueing the results afterwards:

� �� �� �� �� �� �� �� � � � � �

�� �

� �

This of course produces one big scaling map for the whole two-stage process —
and it is precisely the scaling map produced by using the operad composition
on the intermediate scaling maps. This is what it means to “interact sensibly”
with the operad composition.

8.1.5 Weak composition for n-categories

The idea is to compose morphisms in n-categories by copying the above approach
for composing paths in spaces. The difference now is that we can’t have E(k)
acting directly on our “paths” (i.e. morphisms), because E(k) is a space and our
morphisms form (n − 1)-categories. We fix this by turning each E(k) into an
(n − 1)-category that captures the information about weak composition. This
is the role of the functor

Πn−1:Top −→ (n− 1)-Cat

which we construct for each n.

NB When we generalise this for the May definition we will not have such a
functor explicitly; rather, we will have a notion of one object acting on another
object even when they live in different categories. So we do not explicitly need
to turn each E(k) into an (n− 1)-category in order to define an action.
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8.1.6 The induction

We will have to proceed by induction simultaneously for the definitions of Πn

and n-categories together, since the definition of Πn needs the definition of
n-Cat, which in turn needs the definition of Πn−1.

The idea is that Πn(X) should be like the fundamental n-groupoid of X but
in the sense of the present definition, i.e. composition is at all times parametrised
by E. This parametrisation trick allows us to avoid all the usual technical
difficulties with composition of homotopies. We never have to choose how fast
to go along components of glued paths — we allow for every possible way and
always remember exactly how we scaled back down to unit length.
We have:

0-cells are points of X

1-cells are paths in X

2-cells are homotopies between paths
...

And as usual, something violent has to happen at the top to force it to be an n-
dimensional structure — we have to do some quotienting at the top dimension.

This produces for each n ≥ 1 an (n−1)-category Πn−1(E(k)) parametrising
composition for n-categories.

8.1.7 The definition

The definition proceeds by induction starting from 0-Cat = Set. At each stage
we will also need the following structure to make the induction go through:

i) n-Cat has finite products, and

ii) Πn preserves finite products.

Definition For n ≥ 1 an n-category A consists of

i) objects: a set A0

ii) hom-(n− 1)-categories: for all a, a′ ∈ A0 an (n− 1)-category A(a, a′)

iii) k-ary composition: for all k ≥ 0 and a0, . . . , ak ∈ A0, an (n− 1)-functor

Πn−1

(
E(k)

)
×A(a0, a1)× · · · ×A(ak−1, ak) −→ A(a0, ak)

satisfying “compatibility” with the operadic composition of E as sketched in
Section 8.1.4.

Definition An n-functor A
F //B consists of
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i) on objects: a function F = F0: A0 −→ B0

ii) on morphisms: for all a, a′ ∈ A0 an (n− 1)-functor

A(a, a′) −→ B(Fa, Fa′)

satisfying “functoriality” — for all k ≥ 0 and a0, . . . , ak the following diagram
commutes:

Πn−1

(
E(k)

)
×A(a0, a1)× · · · ×A(ak−1, ak) A(a0, ak)

Πn−1

(
E(k)

)
×B(Fa0, Fa1)× · · · ×B(Fak−1, Fak) B(Fa0, Fak)

//

�� ��
//

For the sake of completeness we now also give the definition of

Πn : Top −→ n-Cat

though we don’t expect it to help clarify the idea.

Definition Let X be a space. We define an n-category ΠnX = A by

i) objects: A0 is the underlying set of X

ii) hom-(n−1)-categories: A(x, x′) = Πn−1(X(x, x′)) — the (n−1)-category
version of the path space

iii) composition: we use the action of E on path spaces and the fact that Πn−1

preserves products to make the following composite

Πn−1

(
E(k)

)
×X(x0,x1)×···×X(xk−1,xk)

Πn−1

(
E(k)

)
×Πn−1

(
X(x0,x1)

)
×···×Πn−1

(
X(xk−1,xk)

)

Πn−1

(
X(x0,xk)

)

∼

��

Πn−1 of the action of E on path spaces

��

The action of Πn on morphisms is defined in the obvious way.

8.2 May

We now go on to show how May’s definition can be seen as a natural generali-
sation of the Trimble approach, even if this is not how it originally arose.
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8.2.1 The idea

The idea is to express the whole definition replacing Top by some “base cate-
gory” B with enough structure. We can do this by examining Trimble’s definition
and restating it as abstract category theory. So we need to ask:

What, categorically, are the features of Top and the operad E that
we exploited in Trimble’s definition?

The answer turns out to be quite tricky (to prove, if not to state) but we hope
to make the idea clear without going into technicalities.

The following table sums up the (informal) correspondence between the var-
ious components in each definition, showing the result of generalisation into the
more abstract setting:

Trimble May

Top B

× ⊗ (symmetric) monoidal structure on B

homotopy equivalence weak equivalence in model category structure on B

the operad E in Top any A∞-operad P in B

Πn : Top −→ n-Cat an “action” of B on n-Cat

There is one further subtlety in this generalisation: May’s definition is “more
enriched” in the sense that it takes a starting point that is already something
enriched, where Trimble builds up from Set and Cat as usual.

Using the terminology of May, Trimble’s inductive definition of n-category
might be called an “E-category in (n− 1)-Cat”; this means that it is weak-
ened by E and enriched in (n− 1)-Cat. Then we have the following inductive
process:

Trimble May

0-Cat Set B

1-Cat Cat P -categories in B
...

...
...

n-Cat E-categories in (n− 1)-Cat P -categories in (n− 1)-Cat
...

...
...

So although the induction step looks the same, the starting point could be
very different. (However, we could define 0-Cat = Set and take the induction
from there instead.)

We now have to ask the questions:
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1) What is the structure we need to start with in order to make this construc-
tion?

2) Is it automatically going to be given again at each step of the induction?

We will discuss each part of the definition and then finally take an inventory
in Section 8.2.5 of the structure we needed.

8.2.2 What will the induction look like?

We wish to define a notion of a category enriched in V and weakened by P . We
will call this a “P -category in V”. (Note that this definition is also sketched in
[71] and this construction is called “categorical P -algebras in V”.)

Here P is to be an operad in a base category B. We can state the definition
to look just like Trimble’s inductive definition of n-category (Section 8.1.7):

Definition (Trimble) An n-category A consists of

i) objects: a set A0

ii) hom (n− 1)-categories: for all a, a′ ∈ A0 an (n− 1)-category A(a, a′)

iii) k-ary composition: for all k ≥ 0 and a0, . . . , ak ∈ A0, an (n− 1)-functor

Πn−1

(
E(k)

)
×A(a0, a1)× · · · ×A(ak−1, ak) −→ A(a0, ak)

satisfying “compatibility” with the operadic composition of E.

So we have the following abstraction:

Definition (May) A P -category A in V consists of

i) objects: a set A0

ii) hom-objects: for all a, a′ ∈ A0 an object A(a, a′) in V

iii) k-ary composition: for all k ≥ 0 and a0, . . . , ak ∈ A0, a morphism in V

P (k)�A(a0, a1)⊗ · · · ⊗A(ak−1, ak) −→ A(a0, ak)

satisfying “compatibility” with the operadic composition of P .

Observe that P (k) doesn’t actually live in the same category as the rest of the
above expression. Here � denotes an “action” of B on V which gives, for all
B ∈ B and V ∈ V , an object B � V ∈ V in a suitably coherent way (see
Section 8.2.5). Comparing the two definitions above it becomes apparent that
this “action” has replaced the use of the functor

Πn−1 : Top −→ (n− 1)-Cat.
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We could demand a functor
Π : B −→ V

but we would lose some generality in doing so.
We write P -Cat-V for the category of P -categories in V .

8.2.3 When is P a sensible choice of operad?

We have seen, in the case of Trimble, two possible operads that are sensible for
this definition — E and 1. The issue here is not what works technically in the
construction, but the following:

Question: When does an operad P give the sort of structure that
deserves to be called “n-category”?

Answer: Whenever each object P (k) is suitably equivalent to 1.

This might remind the reader of a similar question in Chapter 3. Note that this
is an operad in the (monoidal) category B, meaning that it has for each k ≥ 0
an object P (k) ∈ B together with suitably coherent composition morphisms
in V . Now if B is a Quillen model category, we have a good notion of “weak
equivalence”, and we have the following definition:

Definition An A∞-operad is an operad P in a model category B such that for
all k, P (k) is weakly equivalent to the unit object 1.

For a sensible definition of n-category, we demand that P be an A∞-operad.

8.2.4 The definition

The definition proceeds by induction as before. First, let B and V be good
enough categories, and let P be an A∞-operad in B. Then we define n-categories
(enriched in B) as follows:

Definition

• 0-Cat = B

• for n ≥ 1, n-Cat = the category of P -categories in (n− 1)-Cat

8.2.5 What structure do we need?

We will not attempt to show that this induction goes through, but will finish
with a brief discussion of what structure we need in B and V to make them
“good enough”.

At each stage of the inductive definition, the new enrichment category V is
the previous category of P -categories in V . So apart from deciding how much
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structure we need in B and V to make the above construction work, we also
need to check that whatever structure we demanded in V will also be present in
P -Cat-V. Without making this at all rigorous, we make the following remarks:

• Structure required in B

i) We need to be able to define an operad in B, so we at least need a
monoidal structure.

ii) We need to be able to define A∞-operads in B, so we need a model
category structure on it.

• Structure required in V

i) We need to have an “action” of B on V ; this may be expressed as V
being tensored over B.

ii) We need to have enough structure to ensure the same in P -Cat-V.

Note that, if we examine the induction process in Trimble’s definition, we should
not expect the “action” to appear automatically at the next level up. That is,
the inductive construction of Πn involves the use of something very specific to
the context, namely, a particular action of E on path spaces. It is not very
obvious what we need to do in order to get something similar in the general
setting.

In fact May assumes that B is closed symmetric monoidal, with Quillen
model category structure cofibrantly generated and proper. V is assumed to
be complete and cocomplete, and enriched, tensored and cotensored over B. It
appears that he has some broader ideological motivation than just making the
definition “work”; indeed, there are various standard topological frameworks
in which such structure might be considered a “bare minimum” starting point.
However, it is not clear how all this structure is to be recreated at each stage of
the induction process.
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Appendix A

Classification tables

We have found it helpful to compile some tables collating the various ways of
characterising definitions as discussed in the introduction and elsewhere. Of
course, filling in boxes is a horribly crude way to sum up such subtle structures
and in many cases we thought of several different justifiable ways of doing it.
Nevertheless, we found it a useful exercise for clarifying our understanding so
have included them here.
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A.1 One-sentence summary of each definition

slogan

Penon An ω-category is an algebra for the monad induced by the adjunction

GSet
//

⊥ Qoo

Leinster An ω-category is an algebra for an initial “operad with (more general)
contraction”.

Batanin An ω-category is an algebra for an initial “operad with contraction
and system of compositions”.

Joyal An ω-category is a cellular set in which every inner horn has a filler.

Street An ω-category is a simplicial set with hollowness in which every ad-
missible horn has a hollow filler and composites of hollow cells are
hollow.

Opetopic An n-category is an opetopic set in which every niche has a universal
filler and composites of universals are universal.

Simpson
Tamsamani

An n-category is a non-cubical n-simplicial set in which every Segal
map is contractible.

Trimble An n-category is a category weakly enriched in (n − 1)-categories
where weakness is parametrised by a certain topological operad de-
scribing path composition.

May An n-category is a category weakly enriched in (n − 1)-categories
where weakness is parametrised by any contractible operad in a model
category.
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A.2 The Data-Structure-Properties trichotomy

data structure properties

Penon cells (and identities) composition +
mediators

sufficient mediation

Leinster cells composition +
mediators

sufficient mediation

Batanin cells composition +
mediators

sufficient mediation

Joyal cells
coherent composition

none sufficient composition

Street cells composition “sufficient and coherent”
composition

Opetopic cells +
coherent composition

none sufficient composition

Simpson
Tamsamani

cells +
coherent composition

none sufficient composition

Trimble cells + composition
parametrised by E

hom-(n–1)-cats coherence carries over
from the operad E

May cells + composition
parametrised by some
operad

hom-(n–1)-cats the operad is coherent
and coherence carries over
from it
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A.3 Other characteristics

idea cell shape algebraic vs
non-algebraic

coherence

Penon graph globular algebraic contraction gives
specified witnesses

Leinster graph globular algebraic contraction gives
specified witnesses

Batanin graph globular algebraic contraction gives
specified witnesses

Joyal nerve cellular
(globular/simplicial)

non-algebraic horn filling gives
existence of witnesses

Street nerve simplicial non-algebraic horn filling gives
existence of witnesses

Opetopic nerve opetopic non-algebraic horn filling gives
existence of witnesses

Simpson
Tamsamani

nerve/
enrichment

multisimplicial non-algebraic contractibility gives
horn filling

Trimble enrichment not presheaf algebraic transferred from
contractible operad

May enrichment not presheaf algebraic transferred from
contractible operad
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bias? route beheading vs
headshrinking

technical inventory

Penon biased higher then weaker
— can do ω

beheading monads

Leinster unbiased higher then weaker
— can do ω

beheading operads

Batanin biased higher then weaker
— can do ω

beheading operads

Joyal biased higher then weaker
— can do ω

headshrinking finite disks/trees

Street biased higher then weaker
— can do ω

headshrinking simplicial sets

Opetopic unbiased weaker then higher
— can’t do ω

headshrinking (multicategories)

Simpson
Tamsamani

biased weaker then higher
— can’t do ω

beheading simplicial sets

Trimble unbiased weaker then higher
— can’t do ω

beheading topological spaces, operads

May unbiased weaker then higher
— can’t do ω

beheading model categories, operads
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Appendix B

A build-your-own
5-associahedron

See over.
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