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Abstract

We make a definition of ω-precategory which should underlie any
definition of weak ω-category. We make a precise definition of pseudo-
invertible cells in this setting. We show that in an ω-precategory with
all weak duals, every cell is pseudo-invertible. We deduce that in any
“sensible” theory of ω-categories, an ω-category with all weak duals
is an ω-groupoid. We discuss various examples and open questions
involving higher-dimensional tangles and cobordisms.

Introduction

The aim of this paper is to show that a weak ω-category with all weak duals
is an ω-groupoid. This immediately begs three difficult questions:

1. What is a weak ω-category?

2. What is a weak dual for a cell in a weak ω-category? and

3. What is a weak ω-category with duals?

A (right) dual for a 1-cell a
f

−→ b in a strict 2-category is a 1-cell b
g

−→ a
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satisfying the triangle identities:
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To make this definition in a weak ω-category rather than a strict one
is more complicated, as the 2-cell composites above are not well-defined if
1-cell composition is not strictly associative. Hence the first question above.

Moreover, to weaken this definition (or categorify it) we would want to
replace the equalities in this definition by specified isomorphisms, which
would then have to satisfy some more axioms of their own. So our second
problem is that to categorify this ω times would take rather a long time,
and some more general theory would be necessary.

In fact, we can avoid both of these issues by completely ignoring the
triangle identities. It turns out that the data e and i are sufficient for the
theorem, without any coherence demands at all. We call g a (right) pre-dual
if it is equipped with e and i as above, with no axioms required.

Using pre-duals we can also avoid the intricacies of defining a weak ω-
category fully since a pre-dual only involves binary composites in its defini-
tion. We will call a globular set A an ω-precategory if it is equipped with
specified “identities” and binary composites, satisfying no further axioms.
We will say it has all pre-duals if every cell of dimension greater than 0 has
a pre-dual. This avoids the problem of the third question above, which is
essentially a question about how duals (and the cells exhibiting them) of dif-
ferent dimensions should interact; there is also a question of how the double
dual of a cell (dual of its dual) should relate to the original cell. However,
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for the purposes of this paper we do not need to assume any coherence of
these sorts, so we will not address these questions.

Finally we will call an ω-precategory an ω-pregroupoid if every cell is
pseudo-invertible in a sense we will make precise; in fact, defining pseudo-
invertibility precisely for the infinite-dimensional case is where most of the
work is required. Then we have the following theorem:

Main theorem. Let A be an ω-precategory in which every cell of non-zero
dimension has a predual. Then A is an ω-pregroupoid.

This might seem rather weaker than the theorem we originally set out to
prove, until we make the following observations:

1. Any notion of ω-category with specified composition should have an
underlying ω-precategory. We will discuss the case of unspecified com-
position later.

2. An ω-category is an ω-groupoid if every cell is pseudo-invertible. This
may be characterised in different ways for different definitions of ω-
category, but we conjecture that an ω-category is an ω-groupoid if and
only if its underlying ω-precategory is an ω-pregroupoid. In fact, we
take this as a desideratum of any “sensible” theory of ω-categories.

The idea is that the proof uses so little dual or ω-category structure that
no matter how the definitions of ω-category and weak dual are completed,
the theorem will still hold.

Finally we note that the use of ω-categories rather than n-categories
(for finite n) is critical here. The idea is that with each successive stage of
categorification, the notion of pseudo-inverse becomes progressively weaker.
Only when we reach the “ultimately weak” notion with ω dimensions of
categorification does the notion become so weak that having all pseudo-
inverses is no better than having all preduals.

In Section 3 we include an extended discussion about tangles and cobor-
disms. These naturally arising examples were the motivation for the main
result. Higher-dimensional tangles (manifolds with corners embedded in
higher dimensional space) provide the main example of a structure which is
expected to be an ω-category with duals and so, by the Main Theorem, in
fact an ω-groupoid. We end by discussing informally various interrelation-
ships between structures that are suggested by this result.
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1 Definitions

We begin by making all the definitions precise.

Definition 1. An ω-precategory is a globular set A equipped with

i) identities: for all k ≥ 0, for all a ∈ A(k), a specified cell

a
Ia
−→ a ∈ A(k + 1)

ii) composition: for all k ≥ 1, for all f, g ∈ A(k) with

x
f

−→ y
g

−→ z

a specified cell

x
g◦f
−→ z ∈ A(k)

with no axioms.

Note that there is even less structure here than in an ω-magma as defined
by Penon [5], as we only compose k-cells along (k − 1)-cell boundaries; in
an ω-magma (and indeed an ω-category) we have composition along j-cell
boundaries for all j < k.

Definition 2. Let x
f

−→ y be a k-cell in an ω-precategory, with k ≥ 1. A

(right) predual for f is a k-cell y
f∗

−→ x equipped with two (k + 1)-cells

Ix

ef
−→ f∗f and ff∗ if

−→ Iy

with no axioms.

Definition 3. We say that an ω-precategory has all preduals if every cell
of dimension greater than 0 has a (right) predual. Note that for the main
theorem it makes no difference whether we take right or left preduals.
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Remark 4. In [1] and [3] the notion of “n-category with duals” includes
the requirement that 0-cells have duals. In the case of a monoidal n-category
(or more generally, k-tuply monoidal n-category) it is still possible to define
a unit and counit for such duals using the monoidal structure. In the case
of an n-category without monoidal structure, Baez and Dolan define duals
for 0- and n-cells without units and counits. See Section 3.1.

Next we define pseudo-inverses. Note that this is technically more tricky
than in the finite dimensional case as we are tempted to but cannot use
induction descending over dimensions. That is, the idea is to say:

“Unsound Definition” 5. A pseudo-inverse for a k-cell x
f

−→ y in an ω-

precategory is a k-cell y
f ′

−→ x such that there exist pseudo-invertible (k+1)-
cells

Ix

ef
−→ f ′f and ff ′ if

−→ Iy

but this requires already knowing what a pseudo-invertible (k + 1)-cell
is. Instead, we specify the data at all dimensions witnessing the pseudo-
invertibility of f (and also the pseudo-invertibility of all the witness data).

Definition 6. A k-cell x
f

−→ y in an ω-precategory A is pseudo-invertible
if it can be equipped with a set

W =
∐

j≥0

W (j)

of “witnesses”, satisfying

i) W (j) ⊂ A(k + j)

ii) f ∈ W (0)

iii) for all α
g

−→ β ∈ W (j) we must have a cell β
g′

−→ α ∈ W (j)

iv) for all α
g

−→ β ∈ W (j) we must have cells in W (j + 1)

Iα
eg
−→ g′g and gg′

ig
−→ Iβ

In this case we say that f ′ is a pseudo-inverse for f .
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The idea is that eg and ig witness the fact that g′ is a pseudo-inverse for
g; to be valid witnesses they must themselves be pseudo-invertible, and this
is in turn witnessed by the cells given by (iii) and (iv) at the next dimension
up.

Note that in practice to specify such a set of witnesses it suffices to
specify 2j+1 cells for each W (j), since we can use g′′ = g, eg′ = (ig)

′ and
ig′ = (eg)

′. This gives, for the first few dimensions:

• W (0) has 2 cells f, f ′ ∈ A(k)

x y
f //

f ′

oo

• W (1) has 4 cells ef , (ef )′, if , (if )′ ∈ A(k + 1)

Ix f ′f
ef //

(ef )′=if ′

oo ff ′ Iy

if //

(if )′=ef ′

oo

• W (2) has 8 cells eef
, (eef

)′, ief
, (ief

)′, eif , (eif )′, iif , (iif )′ ∈ A(k+2)

IIx (ef )′ef

eef //

(eef
)′

oo ef (ef )′ If ′f

ief //

(ief
)′

oo

Iff ′ (if )′if

eif //

(eif
)′

oo if (if )′ IIy

iif //

(iif )′
oo

Definition 7. An ω-pregroupoid is an ω-precategory in which every cell of
non-zero dimension is pseudo-invertible.

We are now ready to prove the theorem; in fact most of the work has
already gone into making the definition of pseudo-invertible cells.

2 The theorem

Theorem 8. Let A be an ω-precategory with all preduals. Then A is an
ω-pregroupoid.

Proof. For any k-cell f we show that its dual f∗ is in fact a pseudo-inverse,
by exhibiting a set W of witnesses:
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• for all g ∈ W (j) put g′ = g∗

• for all g ∈ W (j) put eg = ηg, ig = ǫg

2

We now show how to remove all the “pre”s from the above theorem,
without even knowing how to define any of the components.

Definition 9. We call a theory of ω-categories sensible if

i) Any ω-category has a canonical underlying ω-precategory

ii) An ω-category is an ω-groupoid if its underlying ω-precategory is an
ω-pregroupoid

iii) If g is a weak dual for f then it is certainly a predual for f

Then we have the following theorem for free:

Theorem 10 (Main theorem). In any sensible theory of ω-categories, if A

is an ω-category with all weak duals then A is an ω-groupoid.

See Section 3.1 for further discussion about what steps would be involved in
completing the definitions of these concepts.

Note on non-algebraic theories of ω-category

Some definitions of higher-dimensional category [2, 7, 8, 9] do not spec-
ify unique composites of cells, but instead assert the existence of compos-
ites. Such notions of ω-category will not have a canonical underlying ω-
precategory as defined above. However, the above definitions can be sys-
tematically modified to allow for this possibility: wherever we see a specified
composite α ◦ β we replace it with the words “some composite α ◦ β”. The
main theorem then follows in the same way.

3 Examples and open questions

In this section we discuss some examples of n-categories with duals and give
our main example of an ω-category with duals, that of “extended cobor-
disms”. Much of this section is conjectural and is presented only in sketch,
with the purpose of motivating the main theorem as well as discussing some
open questions suggested by the result.
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We begin by briefly discussing the notion of “n-category with duals”. A
precise definition has not been made for general n, but the naturally arising
structure of higher-dimensional tangles suggests many features which the
eventual definition should have.

3.1 n-categories with duals

The notion of n-category with duals appeared in [1]. As in the case of ω-
categories with duals, we are not yet in a position to give a full definition,
but a preliminary “pre”-definition. The idea here is just the same as for the
ω case, except that now a dual for an n-cell α : x −→ y in an n-category is
simply an n-cell α∗ : y −→ x. We cannot demand a unit and counit since
these would need to be (n + 1)-cells.

In [1] Baez and Dolan describe “k-tuply monoidal n-categories with du-
als” for the cases n = 0 and n = 1, k = 0. Beyond these low dimensions, the
notion already becomes poorly understood. One of the motivating reasons
for studying higher-dimensional tangles is to gain a greater understanding
of these notions from naturally arising examples.

In summary, to complete the definition of “n-category with duals”, at
least the following issues must be considered:

• systematic treatment of duals for 0-cells (see below)

• coherence for units and counits

• coherence for interaction between duals of different dimensions

• relationship between inverses and duals for coherence cells

• relationship between the double dual of a cell and the original cell

• relationship between duals and composition

• relationship between duals and coherence cells for the n-category struc-
ture

We discuss some of the issues below.

3.1.1 Duals for 0-cells

In fact Baez and Dolan also consider duals for 0-cells even though it is not in
general possible to define a unit and counit for them; this is however possible
in the presence of a monoidal structure. In practice many of our motivating
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examples are expected to have a k-tuply monoidal structure. Recall that
a k-tuply monoidal n-category is a (k + n)-category that is trivial in the
lowest k dimensions, that is, it has only one (k − 1)-cell. Thus the lowest
non-trivial dimension is the kth, and we can perform a “dimension shift” and
regard the k-cells as the 0-cells of an n-category with k monoidal structures
that interact in some coherent way. Now, a k-tuply monoidal n-category
with duals can be defined as a degenerate (n + k)-category with duals, so
in particular it has duals for its 0-cells, i.e., the k-cells of the degenerate
(n + k)-category, as well as for all cells of higher dimensions.

3.1.2 Monoidal categories with duals

Note also that this notion is different from the usual notion of “monoidal
category with duals” in which the objects have duals but the morphisms
do not. We will later discuss the coherence result of Shum [6] which shows
that in the presence of enough coherence, the free such structures coincide.
The significance of this coincidence does not seem to be well-understood,
but this does suggest another coherence issue that needs consideration–in
Shum’s tortile tensor categories, there is some extra coherence structure (the
“balancing”) governing the interaction between the duals and the braiding.

3.1.3 n-categories as a special case of ω-categories

Note that another approach to defining n-categories with duals would be
to regard an n-category as an ω-category in which all cells of dimension
higher than n are identities. In this case a dual for an n-cell would just
be an inverse. However this is not the sort of structure we are seeking
to characterise. Inverses should be examples of duals (hence for example a
groupoid is an example of a category with duals) but our motivating example
involves “tangles”, which have duals that are not inverses.

3.2 Tangles

We consider the example of “framed tangles”; the idea is that these should
be oriented manifolds with corners, embedded in cubes of higher dimension.

Baez and Dolan [1] and Baez and Langford [3] study categories of tangles
as a stepping stone to understanding abstract manifolds with corners and
categories of extended cobordisms. This is a reasonable approach since
when manifolds are embedded in cubes of sufficiently high dimension, they
can be treated as abstract manifolds in a sense made precise by the Whitney
embedding theorem.
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This is one of the ideas that lies behind the three hypotheses made by
Baez and Dolan in [1]: the Tangle Hypothesis, the Stabilisation Hypothesis
and the TQFT Hypothesis. Before discussing the relevance of our main
theorem to these, we quote some low-dimensional results.

First we explain the terminology. An “n-tangle in d-dimensions” is
roughly speaking an n-manifold with corners embedded in [0, 1]d in such
a way that the codimension j corners of the manifold are mapped into the
subset of [0, 1]d for which the last j coordinates are either 0 or 1. Intuitively
this just means that codimension j corners of the manifold only occur at
codimension j corners of the cube. A “framing” of an n-tangle is a homo-
topy class of trivialisations of the normal bundle. Note that this, together
with the standard orientation on [0, 1]d determines an orientation of the
submanifold.

Some examples of framed n-tangles in (n + k) dimensions are depicted
below, as given in [1].
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Theorem 11 (Shum [6]). Isotopy classes of framed oriented 1-tangles in
3 dimensions are the morphisms of the free braided monoidal category with
duals on one object.

Remarks 12. i) Note that 1-tangles in 3 dimensions are “ordinary”
tangles as studied by knot theorists.

ii) Note also that the above statement of the theorem is not Shum’s but
a restatement given in [3]. Shum uses “double tangles”, where the
strands are “thickened” and so may be twisted; this essentially corre-
sponds to giving a framing of the tangle. See further remarks below.

Theorem 13 (Baez-Langford [3]). The 2-category of 2-tangles in 4-dimensions
is the free semistrict braided monoidal 2-category with duals on one unframed
self-dual object.

Remark 14. In general the framing does not affect the presence of duals,
although it does affect the sort of free structure that results, essentially
because the duality for objects becomes trivial.

In general we expect m-tangles in (m + k)-cubes to organise themselves
into a k-degenerate ω-category with cells as follows:

0-cells trivial
1-cells trivial

...
...

(k − 1)-cells trivial
k-cells 0-manifolds embedded in k-cubes

(k + 1)-cells 1-manifolds embedded in (k + 1)-cubes
(k + 2)-cells 2-manifolds embedded in (k + 2)-cubes

...
...

(k + n)-cells n-manifolds embedded in (k + n)-cubes
...

...

The term “k-degenerate” refers to the fact that the lowest k dimensions of
the structure are trivial.

It is easy to see the idea of this ω-category although the technical details
are difficult to make precise. (Some work in this direction has been done
in [4]). The idea is that d-dimensional cubes can be “stacked” in any of
the d-directions corresponding to their axes, giving the required d kinds of
composition of d-cells.

12



We might also decide to “terminate” after a finite number of dimensions
and take isotopy classes of n-manifolds embedded in (k + n)-cubes as the
top dimension. In either case we can perform the usual “dimension shift”,
and regard the structure as a “k-tuply monoidal” n-category (or k-tuply
monoidal ω-category.

This idea, together with the two low-dimensional examples given by
Theorems 11 and 13 above, leads to the following hypothesis.

Hypothesis 15 (Tangle Hypothesis, Baez-Dolan [1]). The n-category of
framed n-tangles in (n+k)-dimensions is (n+k)-equivalent to the free weak
k-tuply monoidal n-category with duals on one object.

Remarks 16. i) Here the n-category of framed n-tangles is named after
its n-cells.

ii) Here “(n+k)-equivalence” should be the appropriate higher-dimensional
notion of equivalence of (n + k)-categories.

iii) It is not hard to see what the duals should be – a dual for an m-cell
should be given by simply reflecting the whole m-cube in its mth axis.

We can check that the two theorems 11 and 13 above do correspond to
the result of the Tangle Hypothesis for the relevant dimensions, but we can
already see that some care is required in interpreting the terms precisely.
In the second case we have n = k = 2 so we expect a “2-tuply monoidal
2-category” which is indeed a sort of braided monoidal 2-category. In the
first case we have n = 1 and k = 2, so we expect a “2-tuply monoidal
category”, or a “2-degenerate 3-category” which is sort of braided monoidal
category. However, the notion of “braided monoidal category with duals”
used by Shum is not the same as that of “2-tuply monoidal category with
duals” used by Baez and Dolan, as the latter has duals for morphisms but
the former does not. The fact that the free structures coincide suggests
another possible definition “braided monoidal 2-category with duals” which,
analogously to Shum’s definition, does not have duals for the top dimensional
cells (i.e., 2-cells) but instead has more coherence requirements which force
the resulting free structures to be the same.

We now note that, abstractly, there is no reason to stop at n-dimensions,
and this gives us an example which relates to our main theorem.

Example 17. For all k ≥ 0 there should be a k-monoidal ω-category whose
m-cells are m-manifolds embedded in (m + k)-cubes. This should have all
duals as above and hence by the Main Theorem should in fact be an ω-
groupoid. Likewise for oriented manifolds.
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Remark 18. By analogy with the Tangle Hypothesis we might expect the
resulting ω-category in the oriented case to be the “free k-tuply monoidal
ω-category with duals on one object” and hence, by the Main Theorem, the
“free k-tuply monoidal ω-groupoid on one object”.

Example 19. There should be an n-category whose m-cells for 0 ≤ m < n

are oriented m-manifolds with corners, and whose n-cells are cobordism
classes of oriented n-manifolds with corners. This should have all duals.
Likewise in the oriented case.

Remark 20. This gives another way to generalise from the Tangle Hypoth-
esis: we make the codimension k large enough that the structures involved
“stabilise”. On the one hand, n-manifolds (with corners) in (n + k)-cubes
may be treated as abstract n-manifolds when k is large enough (that is,
k ≥ n + 2 by the Whitney embedding theorem); on the other hand, the
Stabilisation Hypothesis [1] suggests a notion of “stable n-category” for k-
tuply monoidal (n + k)-categories when k is large enough. Thus we might
expect the n-category of framed cobordism classes of oriented n-manifolds
with corners to be suitably equivalent to the free stable n-category with
duals on 1-object.

In fact the behaviour of manifolds may be seen as evidence supporting the
Stabilisation Hypothesis, where “k large enough” is also given as k ≥ n + 2.

Our final example combines both of these forms of generalisation, that
is:

• making codimension k large enough to reach the “stable” situation,
and

• considering the infinite-dimensional structure rather than terminating
at finite n.

However, we note that in the infinite-dimensional case the idea of “making
codimension k large enough” needs to be interpreted appropriately, as no
finite k will be “large enough”; instead, some appropriate notion of limit
will be required.

Example 21. We expect there to be an ω-category with duals whose n-
cells are n-manifolds with corners. By our Main Theorem, this would in fact
be an ω-groupoid. Likewise in the oriented case.

Remark 22. Combining the Tangle and Stabilisation Hypotheses gives the
hypothesis that the above ω-category in the oriented case should be the “free
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stable ω-category with duals on one object”, which, by the Main Theorem,
should also be the “free stable ω-groupoid on one object”.

The interrelationship between the above examples is summarised in the fol-
lowing schematic diagram. The back “face” of the cube shows the finite-
dimensional structures, where we “terminate” at n dimensions. The front
face shows the putative ω-category structures, including all dimensions with-
out terminating at n. The top face shows the manifolds, and the bottom
face the abstract categorical structures with which they are compared. The
right hand face shows the structures resulting from a fixed codimension k,
and the left hand face shows the putative stable situation, when k is large
enough (as interpreted appropriately).
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That k-manifolds with corners form an ω-category could be seen as a
desideratum of any theory of higher-dimensional categories. The fact that
this ω-category would in fact be an ω-groupoid suggests further connec-
tions with toplogy. By analogy with the Pontryagin-Thom Theorem, this
ω-groupoid could be seen as a candidate for the fundamental ω-groupoid
of Ω∞S∞. The Pontryagin-Thom theorem says that the nth homotopy
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group of Ω∞S∞ is isomorphic to the group of framed cobordism classes of
n-manifolds. We see the following stages of generalisation:

i) Generalising to paths instead of loops (ie homotopy groupoid instead
of homotopy group) corresponds to allowing manifolds with corners.

ii) Instead of considering each homotopy group separately, we can now
consider the fundamental n-groupoid, truncating at the nth dimension.
However, on the other hand this gives us the n-category of “cobordism
classes of oriented n-manifolds with corners” which is expected to be
a n-category, not an n-groupoid.

iii) Instead of truncating, we consider the fundamental ω-groupoid of
Ω∞S∞. Correspondingly, this generalisation on the manifold side gives
us the ω-category of the example above and hence, by the main theo-
rem, an ω-groupoid which might be regarded as a candidate for being
the fundamental ω-groupoid in question.

The possible interrelationship of these structures is summed up in the
following schematic diagram.

17



nth homotopy group
of Ω∞

S
∞

framed cobordism classes of
oriented n-manifolds

framed cobordism classes of
oriented n-manifolds
with corners

fundamental n-groupoid
of Ω∞

S
∞

oriented n-manifolds
with corners,
for all n

fundamental ω-groupoid
of Ω∞

S
∞

free stable ω-groupoid
on one object

oo

Pontryagin-Thom
∼= //

generalise

��

generalise

��

don’t

terminate

��

don’t

terminate

��

>>

Main

Theorem
~~

oo ? //
``

?

  

Remark 23. The Main Theorem tells us a circumstance in which a “di-
rected” structure (ω-category) is in fact an “undirected” one (i.e. every-
thing is invertible as in an ω-groupoid). Regarding the homotopy groups of
Ω∞S∞ as the stable homotopy group of spheres suggests questions about
the homotopy n-categories of directed spheres, and the possibility of directed
spaces whose directed homotopy type becomes the same as the undirected
homotopy type of the underlying undirected space, when the full infinite
dimensional structure is taken into account.
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